Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entlarvender Farbwechsel

15.03.2005


Farbsensor: Nachweis von Adrenalin in Harnproben



Wenn wir Stress haben oder uns aufregen, schießt uns das Adrenalin ins Blut, der Blutdruck steigt, wir fangen an zu schwitzen - eine ganz normale Reaktion. Ganz und gar nicht normal ist der erhöhte Adrenalinspiegel von Patienten, die an einem Phäochromozytom leiden, einem Tumor des Nebennierenmarks, der den Organismus regelrecht mit dem Hormon überschwemmt. Die kritisch hohen Werte führen auf Dauer unausweichlich zu Herzversagen. Entsprechend wichtig ist eine zuverlässige, rechtzeitige Diagnose. Deutsche Forscher haben nun einen vielversprechenden neuen Farbsensor zur Bestimmung von Adrenalin in Harnproben entwickelt.



Adrenalin und Noradrenalin sind so genannte Catecholamine. Eine ganze Reihe von Hormonen und körpereigenen Botenstoffen gehören dieser Verbindungsklasse an. Ihnen gemeinsam ist das Phenylethylamin-Gerüst mit zwei benachbarten Alkohol-Gruppen (OH). Üblicherweise werden Catecholamine in Blut- oder Urinproben über chromatographische Methoden nachgewiesen. Thomas Schrader und Michael Maue von der Universität Marburg haben nun die Basis für ein neues Verfahren geschaffen, das den Catecholamingehalt physiologischer Proben einfach, schnell und sehr ökonomisch bestimmt. Den Forschern ist es gelungen, ein Rezeptormolekül zu entwerfen und zu synthetisieren, das Catecholamine sehr selektiv bindet: Der Rezeptor trägt zwei Phosphonatgruppen, die den Stickstoff des Catecholamins in die Zange nehmen, und eine Boronsäuregruppe, die mit den beiden benachbarten Alkoholgruppen des Catecholamins unter Ringschluss reagiert. Eine wichtige Rolle kommt auch dem Mittelteil zu, der die beiden Bindestellen in einem passenden Abstand zueinander hält, dabei aber eine ausreichende Biegsamkeit mitbringen muss.

Und so funktioniert der Farbtest: Die Forscher nehmen einen Farbstoff, der ebenfalls einen Catecholamin-ähnlichen Molekülteil enthält - und sogleich durch den Rezeptor gebunden wird. Wird nun eine Catecholamin-haltige Probe zugegeben, verdrängen die "richtigen" Catecholamine den Catechol-Farbstoff nach dem Konkurrenzprinzip vom Rezeptor. Der Trick dabei: In der Rezeptor-gebundenen Form hat der Farbstoff eine andere Farbe als frei in Lösung - bei Anwesenheit von Catecholaminen in der Probe schlägt deshalb die Farbe von orange nach tiefrot um. Je mehr Catecholamine in der Probe enthalten sind, desto mehr Farbstoff wird freigesetzt. Die Menge an freiem Farbstoff lässt sich mit einem Spektrometer quantifizieren. "Auch in komplexen Proben wie Urin reagiert der Test extrem selektiv auf Catecholamine," sagt Schrader. "Nun versuchen wir, die Empfindlichkeit des Tests weiter zu erhöhen."

Kontakt:
Prof. T. Schrader
Fachbereich Chemie
Universität Marburg
Hans-Meerwein-Straße
35032 Marburg
Germany
Tel.: (+49) 6421-28-25544
Fax: (+49) 6421-28-28917
E-mail: schradet@staff.uni-marburg.de

Angewandte Chemie Presseinformation Nr. 11/2005 Angew. Chem. 2005, 117, Heft 15

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Adrenalin Catecholamine Farbstoff Probe Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie