Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzigen "Einzeltätern" auf der Spur

14.03.2005


Erfolgreiche Kooperation von Jenaer Wissenschaftlern mit der Industrie. Neues Verfahren zur raschen Erkennung von Verunreinigungen in Reinräumen.



In einer erfolgreichen Zusammenarbeit mit der Industrie haben Prof. Dr. Jürgen Popp und seine Mitarbeiter vom Institut für Physikalische Chemie der Universität Jena die Grundlagen für eine neuartige Technologie erforscht und umgesetzt, die gefährliche Keime in der Luft oder im Wasser vor Ort und ohne Zeitverlust erkennen kann. In Kooperation mit der Universität Freiburg, der Berliner Schering AG und den Firmen Kayser-Threde GmbH (München) und rapID Particle Systems GmbH (Berlin) entstand ein Gerät, das Luftverunreinigungen schnell und eindeutig identifizieren kann.



Verschiedene Bakterienarten rasch unterscheiden

Die wissenschaftlichen Grundlagen für diese technische Innovation wurde von den Jenaer Forschern jetzt in der neuesten Ausgabe der renommierten Fachzeitschrift "Applied Enviromental Microbiology" veröffentlicht. Darin beschreiben die Physikochemiker eine spezielle Spektroskopiemethode zur Unterscheidung und Identifizierung einzelner Bakterienzellen, die z. B. als Verunreinigung in Reinräumen in der Lebensmittel- oder Medikamentenproduktion großen Schaden anrichten können. "Wir sind mit dieser Methode und deren computergestützter Auswertung in der Lage, verschiedene Bakterienarten mit einer Trefferquoten von bis zu 93 Prozent zu unterscheiden", berichtet Dr. Petra Rösch aus der Arbeitsgruppe von Prof. Popp.

Bakterien sind allgegenwärtig - auf unserer Haut, auf Oberflächen, im Boden, in Lebensmitteln und in der Raumluft. Da sie sehr klein sind, nehmen wir sie in der Regel nicht wahr - es sei denn, sie lösen zum Beispiel bei Lebensmitteln einen Fäulnis-Prozess aus oder führen beim Menschen zu einer Krankheit wie etwa einer Blasen- oder Lungenentzündung. Während wir also im Großen und Ganzen mit den Winzlingen leben können, gibt es Bedingungen, in denen schon die Anwesenheit mikrobieller "Einzeltäter", also einzelner Bakterienzellen fatal ist, zum Beispiel in Operationssälen oder Reinräumen. Dort darf die Luft keinerlei Verunreinigungen enthalten, weder Staub noch Keime wie Bakterien oder Pilzsporen. Dennoch können solche Verschmutzungen auftreten - so gelangen durch Abrieb feinste Metall- oder Kunststoffteilchen in die Luft oder Mitarbeiter tragen trotz spezieller Kleidung Haar- oder Hautpartikel in den Raum. Diese schnell und eindeutig zu identifizieren ist von entscheidender Bedeutung: Nur so kann die Quelle der Verunreinigung zeitnah gefunden und das Problem rasch gelöst werden. Ein teurer Produktionsausfall kann so vermieden werden.

Fingerabdruck mit Raman-Spektroskopie

"Bisher konnte man Bakterien meist nur nach einer Kultivierung auf Nährböden unterscheiden", erläutert Prof. Popp. "Das nahm mindesten einen, in der Regel aber mehrere Tage in Anspruch". In seiner Arbeitsgruppe wird dagegen die nach einem indischen Physiker benannte Raman-Spektroskopie verwendet. Sie beruht auf der Wechselwirkung von Licht und Materie: Bestrahlt man Moleküle mit Licht, so wird dieses in ganz charakteristischer Weise gestreut. Man erhält so Informationen über die Schwingungen eines Moleküls, deren Streuungsmuster eine Art Fingerabdruck liefern, der eindeutig dem Molekül zuzuordnen ist. Da jede Bakterienoberfläche eine ganz spezielle Zusammensetzung hat, kann man mit Raman-Spektroskopie auch "Fingerabdrücke" der Mikroben erhalten. "Die Unterschiede sind allerdings so gering, dass die Spektren nicht mit bloßem Auge ausgewertet werden können", betont Dr. Rösch.

Datenbank mit "Täterprofilen"

Hier kommen die Wissenschaftler vom Lehrstuhl für Mustererkennung und Bildverarbeitung der Uni Freiburg ins Spiel. Sie haben eine computergestützte Rechenmethode, die normalerweise dazu verwendet wird, von Sicherheitskameras aufgezeichnete Fotos zu analysieren, an die speziellen Anforderungen der Spektrenauswertung angepasst. Mit ihrer Hilfe können nach den Prinzipien der Mustererkennung die einzelnen Spektren einer Bakterienart zugewiesen werden. "Allerdings müssen wir dazu den Computer erst einmal mit einer großen Menge Daten füttern, damit er Vergleichsmöglichkeiten hat", erläutert Dr. Rösch. "Denn die Bakterien können sich geringfügig verändern, je nachdem, auf welchen Nährböden und bei welcher Temperatur sie wachsen." Langfristiges Ziel der Arbeiten ist der Aufbau einer Datenbank, in die Spektren möglichst vieler unter unterschiedlichen Bedingungen gewachsener Organismen eingehen. "Dann werden Probennahme, Spektroskopievorgang und Auswertung direkt vor Ort stattfinden können", betont Rösch.

Testung geplant

Ab kommenden Frühjahr wird die Berliner Schering AG die Methode in ihren Reinräumen testen. Das entsprechende Gerät haben die Firmen Kayser-Threde GmbH (München) und rapID Particle Systems GmbH, Berlin, gebaut und in enger Abstimmung mit den Wissenschaftlern in Jena und Freiburg weiterentwickelt. "Dies ist ein Beispiel für eine äußerst gelungene Zusammenarbeit zwischen Forschung und Industrie", freut sich Prof. Dr. Jürgen Popp, "und dafür, wie anwendungsorientiert Grundlagenforschung sein kann." Das Gerät wird ab morgen abend auf dem Symposium "Struktur und Dymanik biologischer Zellen mit optischen Methoden auf der Spur" auf dem Campus am Ernst-Abbe-Platz der Öffentlichkeit vorgestellt.

Die Untersuchungen fanden im Rahmen des Projektes "OMIB" ("Online Monitoring und Identifizierung von Bioaerosolen") statt, das Teil des bundesweiten Forschungsschwerpunktes Biophotonik ist. In diesem vom Bundesforschungsministerium (BMBF) und dem Verband Deutscher Ingenieure (VDI) geförderten Schwerpunkt arbeiten zahlreiche Wissenschaftler aus Forschung und Industrie an innovativen optischen Technologien zur Lösung aktueller Probleme aus Medizin, Biotechnologie und Umweltwissenschaften.

Kontakt:
Dr. Petra Rösch und Prof. Dr. Jürgen Popp
Institut für Physikalische Chemie der Universität Jena
Tel.: 03641/ 948381
Fax: 03641/ 948302
E-Mail: juergen.popp@uni-jena.de

Susanne Liedtke | idw
Weitere Informationen:
http://www.biophotonik.org

Weitere Berichte zu: Bakterienart Bakterium Molekül Reinräume Spektren Verunreinigung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften