Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das kurze Gedächtnis des Wassers

10.03.2005



Forscher des Max-Born-Instituts und der University of Toronto weisen extrem schnelle Fluktuationen in flüssigem Wasser nach - Publikation in Nature


Einen Forscherteam des Max-Born-Instituts in Berlin-Adlershof und der University of Toronto ist es erstmals gelungen, ultraschnelle Fluktuationen in der Struktur von flüssigem Wasser nachzuweisen. Die Wissenschaftler nutzten dazu neue Methoden der Femtosekunden-Schwingungsspektroskopie. Wie sie in der aktuellen Ausgabe von Nature (Bd. 434, Seite 199) berichten, geht in dem fluktuierenden Netzwerk gekoppelter Wassermoleküle das strukturelle Gedächtnis innerhalb von 50 Femtosekunden verloren, schneller als in jeder anderen Flüssigkeit. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde.

Wasser (H2O) ist eine der Grundlagen des Lebens auf der Erde. Es dient als Medium für die wichtigsten biologischen Vorgänge, sei es als "Lösungsmittel" für Biomoleküle, sei es als Lieferant von Protonen für den Transport von Ladungen. Flüssiges Wasser besteht aus einem ungeordneten Netzwerk von Molekülen, das durch schwache chemische Bindungen (die so genannten Wasserstoffbrücken) zusammengehalten wird. Dieses Netzwerk unterliegt ständigen Fluktuationen, das heißt, die Anordnung der Wassermoleküle und ihre Wechselwirkung ändern sich ständig. Dabei werden Wasserstoffbrücken immer wieder gebrochen und neu geformt. Trotz intensiver Forschung ist die strukturelle Dynamik des Wassers, die wesentlich im Femtosekundenbereich abläuft, erst in Ansätzen bekannt.


In den in Berlin durchgeführten Experimenten regt ein Lichtimpuls in einem extrem dünnen Wasserfilm lokal eine molekulare Schwingung an: die Streckschwingung eines Wassermoleküls (siehe auch Animation 1). Der Wasserfilm ist 0,5 Mikrometer dünn. Zum Vergleich: Ein menschliches Haar ist hundertmal dicker. Der infrarote Lichtimpuls (Wellenlänge: 3 Mikrometer) dauert 70 fs.

Das von dem Lichtimpuls zum Schwingen angeregte Molekül dient als Sonde für die Fluktuationen des molekularen Netzwerks, die zu einer Veränderung der Schwingungsfrequenz und -phase führen. Mit dem Verfahren der "zweidimensionalen Schwingungsspektroskopie" machen die Wissenschaftler am MBI diese Änderungen in Echtzeit sichtbar und bestimmen daraus Zeitskala und Mechanismus der Fluktuationen. Dabei zeigt sich, dass die zum Zeitpunkt der Schwingungsanregung vorliegende Struktur des Netzwerks innerhalb von zirka fünfzig Femtosekunden verloren geht, einem Zeitintervall, das viel kürzer ist als die Lebensdauer einer Wasserstoffbrücke von ungefähr tausend Fentosekunden.

Ursache des schnellen Strukturverlusts sind gehinderte Kipp- und Rotationsbewegungen der gekoppelten Moleküle, die Wissenschaftler sprechen von "Librationen" der Wasserstoffbrücken. Diese verändern die relative Orientierung der Wassermoleküle zueinander und tragen so zum Verlust des strukturellen Gedächtnisses in der Flüssigkeit bei (Animation 2). Gleichzeitig wird auf einer etwas langsameren Zeitskala von 100 fs die anfänglich lokalisierte Schwingungsanregung auf die Nachbarmoleküle übertragen. Die ultraschnelle strukturelle Dynamik und der extrem schnelle Zerfall lokaler Anregungen sind entscheidend für die Stabilisierung von biologischen Systemen in wässriger Umgebung.

Die Ergebnisse der deutsch-kanadischen Zusammenarbeit, die von der Deutschen Forschungsgemeinschaft (Sonderforschungsbereich 450) und der Alexander-von-Humboldt-Stiftung (Humboldt-Preis für R.J.Dwayne Miller) gefördert wurden, zeigen erstmals das extrem kurze strukturelle Gedächtnis von reinem Wasser. Die Analyse dieses Verhaltens in ähnlichen Systemen, zum Beispiel in wässrigen Lösungen, und seine Bedeutung für biologische Funktionen werden Gegenstand weiterer gemeinsamer Untersuchungen sein.

Animation 1

Streckschwingung des Wassermoleküls. Ein ultrakurzer Lichtimpuls regt die asymmetrische Streckschwingung des gewinkelten Wassermoleküls an (rot: Sauerstoffatom, grau: Wasserstoffatome). Das Wassermolekül ist eingebettet in ein Netzwerk von Wasserstoffbrücken zwischen den Wasserstoffatomen und Sauerstoffatomen auf benachbarten Molekülen (kleine graue Symbole). Gezeigt sind die Auslenkungen der Atome während der Streckschwingung, eine Schwingungsperiode dauert 10 Femtosekunden. (Animation von J. Dreyer, MBI)

Hier finden Sie die Animation: www.fv-berlin.de/pm_archiv/2005/fotos/animation1.gif

Animation 2

Librationsbewegung des Wassers. Librationsbewegungen verändern die relative Orientierung der Wassermoleküle zueinander und tragen so zum Verlust des strukturellen Gedächtnisses in der Flüssigkeit bei. Eine Schwingungsperiode der gezeigten Libration dauert ungefähr 40 Femtosekunden. (Animation von J. Dreyer, MBI)

Hier finden Sie die Animation: www.fv-berlin.de/pm_archiv/2005/fotos/libration.gif

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences