Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteine Protonen leiten: RUB-Biophysiker klären Protonen-Transport in Zellen

09.03.2005


So wie der elektrische Strom mittlerweile unverzichtbar für das reibungslose Funktionieren unserer Zivilisation ist, sind exakt aufeinander abgestimmte Protonen-Ströme verantwortlich für die präzise Regulation von Prozessen in lebenden Zellen. Wie aber schaffen es die Zellen ohne Verkabelung, die Protonen gezielt und schnell zu leiten? Dr. Florian Garczarek und Prof. Dr. Klaus Gerwert vom Lehrstuhl für Biophysik der RUB konnten zeigen, dass Proteine wie geschickte Ingenieure durch Anwendung der grundlegenden Prinzipien des Protonen-Transports in Wasser einen extrem schnellen und gezielten Protonen-Transport in Zellen ermöglichen. Über ihre Entdeckung berichten die Forscher zusammen mit Janos Lanyi und Leonid Brown von der University of California, USA, in der aktuellen Ausgabe der renommierten US-Fachzeitschrift PNAS (Proceedings of the National Academy of Science).


Protein mit gebundenem Wasser. Unten: Das den Transportprozess reflektierende Infrarotmesssignal.



"Moses-Mechanismus" baut auf den Zufall



Protonen sind positiv geladene Atomkerne, also Wasserstoffatome ohne negativ geladene Elektronenhülle. Die Frage, wie Protonen in Wasser geleitet werden, hat viele renommierte Physikochemiker angezogen; ein prominent unter ihnen ist Manfred Eigen. Er konnte diese seinerzeit "unmessbar" schnellen Reaktionen in den 1960er-Jahren zum ersten Mal auflösen und wurde dafür mit dem Nobelpreis geehrt. Heute erlauben moderne Computersimulationen, diese Prozesse sichtbar zu machen: "In Wasser werden Protonen nach dem gleichen Muster transportiert wie Moses durch das rote Meer schritt", veranschaulicht Prof. Gerwert. "Vor ihm verschwand das Wasser und hinter ihm strömte es wieder zusammen." Das Proton wandert wie Moses entlang den Verbindungen zwischen den einzelnen Wassermolekülen, den sog. Wasserstoffbrücken. Dabei können sich die Protonen extrem schnell bewegen. Innerhalb von Picosekunden (ps, d.h. 10-12 Sekunden) oszillieren sie zwischen den einzelnen Wassermolekülen. Für ihr Vorwärtskommen ist aber nicht diese schnelle Oszillation des Protons entscheidend, sondern das zufällige Ablösen eines Wassermoleküls aus dem Komplex auf einer Seite und seine Rückbindung auf der anderen Seite. Das Proton hüpft in die entstehende Lücke. Diesen Prozess hat daher ein israelischer Wissenschaftler als "Moses-Mechanismus" bezeichnet.

Proteine transportieren Protonen gezielt

Wie aber leiten die viel komplexer aufgebauten Proteine die Protonen? Um diese Frage zu beantworten, untersuchten die Forscher den durch Licht ausgelösten Protonenpumpmechanismus des Bakteriorhodopsins. Bakteriorhodopsin ist ein in der Zellmembran eingebautes Protein. Es kann Licht absorbieren und in gezielte Protonentransfer-Reaktionen umsetzten: Die ein Proton umhüllenden Wassermoleküle in flüssigem Wasser werden im Protein, wie in der Arbeit gezeigt werden konnte, gezielt durch Aminosäuren ersetzt. Aminosäuren sind die Bausteine der Proteine. Eine dieser Aminosäuren, Arg 82, wird dann definiert vom Protein in einem ganz bestimmten Arbeitsschritt bewegt. Im Wasser ist der Protonentransfer durch zufälliges Ablösen eines Wassermoleküls aus der Hydratschale bestimmt. Im Protein wird dieser Prozess durch eine gezielte Bewegung einer Aminosäure zu einem genauen Zeitpunkt induziert. Somit können Proteine sehr schnell und sehr gezielt die leicht beweglichen Protonen transportieren. Die sich in der Membran ansammelnden Protonen können vergleichbar einem Stausee an anderer Stelle der Membran abgelassen werden, um dort die Turbinen eines anderen Proteins, einer ATPase anzutreiben. Dieses Protein kann die Rotation der Turbinen dazu nutzen, die Bausteine ADP und Pi zu dem energiereichen ATP zusammen zusetzen. ATP ist der Treibstoff der belebten Natur. Bakteriorhodopsin betreibt Photosynthese, bei der Lichtenergie in chemische Energie umgewandelt wird.

Neue Methode erlaubt Einblicke

Prof. Gerwert und sein Team konnten den lichtgetriebenen Protonenpumpmechanismus des Bakteriorhodopsins dank eigens entwickelten spektroskopischen Methode untersuchen. "Diese sog. zeitaufgelöste trFTIR-Methode erlaubt es, Prozesse in Proteinen quasi wie mit einer Videokamera aufzunehmen", erläutert Gerwert. "Aber erst die interdisziplinäre Kombination dieser innovativen physikalischen Methode mit modernsten genetischen Methoden konnte alle bisherigen Widersprüche über den Protonentransportmechanismus, die unter Wissenschaftlern weltweit diskutiert wurden, klären."

Dr. Josef König | idw
Weitere Informationen:
http://www.bph.rub.de

Weitere Berichte zu: Aminosäure Bakteriorhodopsin Gerwert ProTon Protein Protonen-Transport Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie