Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Thrombopoietin: Wachstumsfaktor für Blutzellen treibt Gehirnzellen in den Tod

07.03.2005


Göttinger Max-Planck-Wissenschaftler entdecken im Gehirn ein unerwartetes Wechselspiel von Faktoren der Blutbildung


TPO: Der Wachstumsfaktor für Blutzellen spielt eine Rolle im Gehirn. Die Abbildung zeigt, dass unter Sauerstoffmangel (Hypoxie) die Expression des TPO-Rezeptors (TPOR) gedrosselt wird. Unter Stressbedingungen wie dieser wäre die regulatorische zelltötende Funktion von TPO nicht wünschenswert. Bild: Max-Planck-Institut für experimentelle Medizin, Göttingen



Zwischen dem Zentralnervensystem und dem blutbildenden (hämatopoietischen) System gibt es eine Reihe interessanter Gemeinsamkeiten. Der Wachstumsfaktor der roten Blutkörperchen, Erythropoietin (EPO), wird beispielsweise im Nervensystem selbst gebildet und dort spezifisch gebunden. EPO besitzt im Gehirn nervenzell-schützende Eigenschaften. Wichtige Funktionen im Gehirn konnten jüngst auch für Thrombopoietin (TPO) nachgewiesen werden. Das Team um Hannelore Ehrenreich vom Max-Planck-Institut für experimentelle Medizin in Göttingen fand heraus, dass dieser mächtigste Stimulator der Blutplättchenbildung auch im Gehirn exprimiert wird und dort eine neue, völlig unerwartete Rolle zu spielen scheint: TPO fungiert als Gegenspieler zu Erythropoietin und verursacht den Zelltod von noch unreifen "Nervenzellen ohne Anschluss". Auf diese Weise wäre TPO mitverantwortlich für die Eliminierung überflüssiger, nicht am Zielort angelangter Nervenzellen (PNAS, 18. Januar 2005).



Im blutbildenden System agieren EPO und TPO als Gegenspieler. Beide Wachstumsfaktoren weisen hohe Sequenzhomologien auf und binden an ähnliche Rezeptoren der Zytokin-Typ-1-Familie. Von Erythropoietin weiß man seit einiger Zeit, dass dieser von der Niere gebildete Faktor im Gehirn potente neuroprotektive (zellschützende) Eigenschaften besitzt: EPO scheint ein wichtiger Überlebensfaktor für Neuronen in Stresszeiten zu sein. Dieses neuroprotektive Potential konnte im Tierversuch beispielsweise bei Hirntrauma und Ischämie (Blutleere) festgestellt werden, wurde aber auch in klinischen Versuchen an Schlaganfallpatienten bestätigt. Über die Anwesenheit von Thrombopoietin im Gehirn gab es bisher widersprüchliche Meinungen.

Nun konnten die Wissenschaftler aus Göttingen zeigen, dass das Thrombopoietin ebenfalls im Gehirn exprimiert wird und dort als Gegenstück zu EPO wirkt. Interessanterweise wird TPO insbesondere im postnatalen Hirn gebildet, wohingegen EPO vor allem im embryonalen Gehirn stark exprimiert und postnatal in seiner Expression vermindert wird. Unter Hypoxie (Sauerstoffmangel im Gewebe) hingegen werden EPO und sein Rezeptor im Gehirn rasch hochreguliert, TPO und sein Rezeptor dagegen gedrosselt. Unerwarteterweise fanden die Autoren, dass TPO sich im Gehirn als potenter pro-apoptotischer Faktor zeigt, das heißt es fördert den Zelltod. Bereits in kleinsten Konzentrationen bewirkt TPO den Tod neu generierter Nervenzellen über den so genannten Ras-ERK1/2-Signaltransduktionsweg. Dieser Effekt von TPO wird komplett aufgehoben durch EPO, aber auch durch Neurotrophine, weitere Signalstoffe im Nervensystem.

Die Forscher vermuten, dass die pro-apoptotische Wirkung von TPO dazu dient, Neuronen zu selektieren, die bereits Anschluss an ihre Zielzellen und damit neurotrophe Überlebenshilfe gefunden haben. Die übrig bleibenden, noch unreifen "Zellen ohne Anschluss" würden getötet. Auf diese Weise wäre TPO mitverantwortlich für die Eliminierung überflüssiger (nicht am Zielort angelangter) Nervenzellen. Das provoziert die Frage: Gibt es Situationen, in denen es interessant sein könnte, das TPO-System zu substituieren und damit überflüssige Zellen zu eliminieren?

Die Göttinger zeigen allerdings, dass TPO-Injektionen im Zustand der Blutleere (Hypoxie/Ischämie), also eines exogen induzierten vermehrten Zelltods, wo das TPO-System normalerweise heruntergefahren wird, zu schwerer Schadensvermehrung im Gehirn führen.

Originalveröffentlichung:

Hannelore Ehrenreich, Martin Hasselblatt, Friederike Knerlich, Nico von Ahsen, Sonja Jacob, Swetlana Sperling, Helge Woldt, Katalin Vehmeyer, Klaus-Armin Nave, Anna-Leena Sirén "A hematopoietic growth factor, thrombopoietin, has a proapoptotic role in the brain" PNAS, 18. January 2005

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: EPO Erythropoietin Nervenzelle Rezeptor TPO Thrombopoietin Wachstumsfaktor Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie