Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flachgelegte Proteine

03.03.2005


Mineral als Formgeber: Peptide ordnen sich auf Glimmeroberflächen zu Strukturen aus flachen Nanobändern an



Verbundwerkstoffe setzen sich in der Technik durch, man denke an Hybridstrukturen aus Metall und Kunststoffen, die sich in vielen Bauteilen unserer Autos verbergen. Auch die Natur arbeitet häufig mit einer interessanten Klasse von Verbundwerkstoffen: Kompositen aus Proteinen und anorganischen Verbindungen. Die Proteine haben dabei meist die Aufgabe, als eine Art Bauanleitung die mineralischen Bestandteile in eine genau definierte Struktur zu bringen. So entstehen beispielsweise die bizarr anmutenden Gerüste von Kieselalgen - oder unsere Zähne. Umgekehrt können aber auch anorganische "Unterlagen" Proteine zur Aggregation anregen, so entstehen ausgedehnte Strukturen. Die Ergebnisse eines britisch-amerikanisches Forscherteams eröffnen nun neue Perspektiven für diese Phänomene.

... mehr zu:
»Peptid »Protein


Bereits zuvor hatte die Gruppe um Neville Boden kleine Peptide entwickelt, die in Lösung ab einer bestimmten Konzentration ein einzigartiges Verhalten zeigen: Spontan aggregieren sie zu langen bandartigen Strukturen, die in der Dicke nur ein einzelnes Molekül messen und an Tagliatelle, Bandnudeln, erinnnern. Diese winzigen Tagliatelle sind spiralig verdrillt und neigen dazu, sich umeinander zu winden und zu komplexeren Fasern zu aggregieren.

Erstaunliches passiert, wenn eine Lösung, die einzelne Moleküle eines solchen Peptids enthält, auf eine Muskovitoberfläche gegeben wird Muskovit ist ein Glimmer, ein schuppiges Mineral mit perlmuttartigem Glanz. In einem Selbstorganisationsprozess lagern sich die Peptide auf dem Glimmer zu langen schmalen bandartigen Strukturen zusammen. Die Bänder wachsen in der Länge immer nur so weit, bis sie ein auf anderes Band treffen, so dass eine "Monolage" entsteht. "Die Bänder sind also nicht verdrillt wie in Lösung, sondern liegen ganz flach auf der Oberfläche," berichtet Conor Whitehouse, der federführende Wissenschaftler bei diesen Experimenten, "sie müssen sich dazu aus ihrer Drillung herausdrehen. Das tun sie, wenn die Bindungsenergie zwischen Peptid und Glimmer hoch genug ist." Whitehouse: "Was die Bänder auf dem Glimmer hält, scheint eine elektrostatische Anziehung zwischen geladenen Gruppen der Peptide und entgegengesetzt geladenen Ionen des Kristallgitters zu sein."

So lange die Lösung sich auf dem Glimmer befindet, liegen die Bänder in einer Orientierung auf der Oberfläche, die deren hexagonale Kristallsymmetrie widerspiegelt. Wird das Lösungsmittel vorsichtig entfernt, verändert sich die Struktur der Peptidaggregate dramatisch. "So lassen sich unter anderem ausgedehnte dicht gepackte Monoschichten parallel angeordneter Bänder erhalten," sagt Whitehouse. "Sie eröffnen einen Weg zu Oberflächenbeschichtungen, die mit proteinartigen Funktionalitäten ausgestattet werden können."

Kontakt:

Prof. N. Boden
Centre for Self-Organising Molecular Systems
Department of Chemistry
University of Leeds
Leeds
LS2 9JT
Tel.: (+44) 113-343-6454
Fax: (+44) 113-343-6452
E-mail: n.boden@chem.leeds.ac.uk

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Peptid Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics