Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher klären Vorgänge beim programmierten Zelltod auf

03.03.2005


Dass kranke oder überflüssige Zellen vom eigenen Körper gezielt getötet und entfernt werden können, ist für Tier und Mensch lebenswichtig. Zelltod oder Apoptose heißt der Vorgang, der bereits in der Embryonalentwicklung und im erwachsenen Organismus eine wichtige Rolle spielt. Auch für die Medizin ist er von großer Bedeutung. Der Wurm "C. elegans" dient als Modellorganismus, um die hierfür wichtigen Prozesse zu erforschen. In seinem Erbgut wurden bisher zwölf Gene identifiziert, die für diesen Prozess verantwortlich sind. Bisher wurde angenommen, dass beim Entfernen einer toten Zelle durch ihre Nachbarzelle zwei parallele Signalketten unabhängig voneinander wirken. Wissenschaftler der Technischen Universität Braunschweig und des Instituts für Molekularbiologie, Zürich, haben nun gezeigt, dass beide Signalketten in ein und dasselbe "Friss mich"-Signal münden (NATURE, VOL 434 | 3 March 2005, 93-99).


C. elegans-Embryo. Der Pfeil zeigt auf einen Zelltod. TU Braunschweig - R. Schnabel



Der Zelltod kann ein vorprogrammierter Bestandteil der Entwicklung eines Embryos selbst sein. In diesem Fall wird die Zahl der zunächst gebildeten Zellen später wieder verringert, um ein Organ zu gestalten. Die Finger des Menschen werden zum Beispiel beweglich, indem die zunächst im Mutterleib gebildeten "Schwimm"-Häute zwischen ihnen durch Apoptose gezielt entfernt werden. Aber auch eine Schwächung oder Erkrankung der Zelle, etwa durch eine Infektion, kann den Zelltod auslösen. Für das Überleben des Organismus ist es in beiden Fällen entscheidend, dass der Körper die abgestorbenen Zellen sauber "entsorgt", um zu verhindern, dass weitere Bereiche oder gar ganze Körperteile oder Organe ebenfalls angegriffen oder infiziert werden. Das Prinzip ist einfach: Nachbarzellen umhüllen und "fressen" die geschädigten Artgenossen und machen sie damit unschädlich. Was genau aber löst diesen Prozess aus?

... mehr zu:
»Apoptose »Gen »Prozess »Zelle »Zelltod


Der nur einen Millimeter lange Wurm "Caenorhabditis (C.) elegans" ist ein vorzügliches Werkzeug, um solche Prozesse aufzuklären. "C. elegans" ist einer der weltweit am besten erforschten Modellorganismen. Das vergleichsweise primitive Lebewesen erlaubt es, die zellulären Mechanismen zu studieren, die in der frühen Evolution ausgeprägt wurden, und die daher von allen höher entwickelten Tieren einschließlich dem Menschen verwendet werden.

Um die Apoptose verstehen zu können, müssen die Forscher zwei Probleme lösen. Erstens müssen Gene identifiziert werden, die an dem Prozess beteiligt sind. Da mit "C. elegans" detaillierte genetische Analysen durchgeführt werden können, stellt er ein ideales System dar, um Mutationen, also Abweichungen in Genen zu isolieren, die für den Zelltod benötigt werden. Aus den Auswirkungen dieser Mutationen können die Forscher Rückschlüsse auf das Funktionieren der Gene im gesunden Organismus ziehen.

Zweitens müssen die zellulären Auswirkungen genauestens mikroskopisch analysiert werden. Prof. Ralf Schnabel, Institut für Genetik der Technischen Universität Braunschweig, untersucht Mutanten mit Hilfe eines von ihm selbst mit entwickelten vierdimensionalen (4-D-) Mikroskops. "Das Instrument ermöglicht uns völlig neue Entdeckungen, da es neben der vollständigen räumlichen Darstellung auch die Entwicklung im Zeitverlauf dokumentiert", erläutert Schnabel. Auf diese Weise wurde von Juan Cabello, TU Braunschweig, eine sogenannte Null-Mutante in dem Gen "ced-10" ("cell death" Nummer 10) aufgespürt. In ihr fällt die biochemische Aktivität dieses Gens vollständig aus. Dies war der Schlüssel zu neuen komplexen genetischen Experimenten mit den sieben Genen, die zum Fressen der toten Zellen benötigt werden. Dabei wurde erstmals deutlich, dass alle Gene auf "ced-10" wirken, welches dann die fressende Zelle verformt, um die tote zu umschließen und aufzunehmen.

"Die Apoptose ist von großem medizinischen Interesse", so Schnabel. "Man würde gern verhindern, dass Zellen bei Herzinfakten, Hirnschlägen oder nach Unfällen sterben. Um Tumore zu bekämpfen wäre es ideal, wenn man die Krebszellen in die Apoptose drängen könnte. Unsere Arbeiten über "ced-10" könnten ein Schlüssel zum Erfolg sein. Pharmazeutische Unternehmen bemühen sich zwar mit ihren Methoden um Medikamente, die in die Apoptose eingreifen. Erstaunlicherweise arbeitet die Industrie aber nur wenig mit den Grundlagenforschern zusammen. Auch ist es in Deutschland zunehmend schwierig, von unabhängiger Seite Fördermittel für solche Arbeiten zu erhalten."

Bereits in einer früheren Veröffentlichung haben Prof. Ralf Schnabel und seine Kollegen mit dem 4-D-Mikroskop nachweisen können, dass geschwächte Zellen eine höhere Überlebenschance haben, wenn die Nachbarzellen daran gehindert werden, diese einzuschließen und unschädlich zu machen. Im Umkehrschluss bedeutet dies, dass diejenigen Gene, die für die Entsorgung zuständig sind, auch "aktiv" den Tod des kranken Gewebes herbeiführen können. Das Zusammenspiel der Zellen kann also ebenso über Leben und Tod entscheiden wie die Vorgänge innerhalb der sterbenden Zelle (NATURE, VOL 412 | 12 July 2001).

Kontakt:

Prof. Dr. Ralf Schnabel,
Institut für Genetik,
Technische Universität Braunschweig,
Tel.: 0531 / 391-5773,
E-Mail: r.schnabel@tu-braunschweig.de.

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de

Weitere Berichte zu: Apoptose Gen Prozess Zelle Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops