Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher klären Vorgänge beim programmierten Zelltod auf

03.03.2005


Dass kranke oder überflüssige Zellen vom eigenen Körper gezielt getötet und entfernt werden können, ist für Tier und Mensch lebenswichtig. Zelltod oder Apoptose heißt der Vorgang, der bereits in der Embryonalentwicklung und im erwachsenen Organismus eine wichtige Rolle spielt. Auch für die Medizin ist er von großer Bedeutung. Der Wurm "C. elegans" dient als Modellorganismus, um die hierfür wichtigen Prozesse zu erforschen. In seinem Erbgut wurden bisher zwölf Gene identifiziert, die für diesen Prozess verantwortlich sind. Bisher wurde angenommen, dass beim Entfernen einer toten Zelle durch ihre Nachbarzelle zwei parallele Signalketten unabhängig voneinander wirken. Wissenschaftler der Technischen Universität Braunschweig und des Instituts für Molekularbiologie, Zürich, haben nun gezeigt, dass beide Signalketten in ein und dasselbe "Friss mich"-Signal münden (NATURE, VOL 434 | 3 March 2005, 93-99).


C. elegans-Embryo. Der Pfeil zeigt auf einen Zelltod. TU Braunschweig - R. Schnabel



Der Zelltod kann ein vorprogrammierter Bestandteil der Entwicklung eines Embryos selbst sein. In diesem Fall wird die Zahl der zunächst gebildeten Zellen später wieder verringert, um ein Organ zu gestalten. Die Finger des Menschen werden zum Beispiel beweglich, indem die zunächst im Mutterleib gebildeten "Schwimm"-Häute zwischen ihnen durch Apoptose gezielt entfernt werden. Aber auch eine Schwächung oder Erkrankung der Zelle, etwa durch eine Infektion, kann den Zelltod auslösen. Für das Überleben des Organismus ist es in beiden Fällen entscheidend, dass der Körper die abgestorbenen Zellen sauber "entsorgt", um zu verhindern, dass weitere Bereiche oder gar ganze Körperteile oder Organe ebenfalls angegriffen oder infiziert werden. Das Prinzip ist einfach: Nachbarzellen umhüllen und "fressen" die geschädigten Artgenossen und machen sie damit unschädlich. Was genau aber löst diesen Prozess aus?

... mehr zu:
»Apoptose »Gen »Prozess »Zelle »Zelltod


Der nur einen Millimeter lange Wurm "Caenorhabditis (C.) elegans" ist ein vorzügliches Werkzeug, um solche Prozesse aufzuklären. "C. elegans" ist einer der weltweit am besten erforschten Modellorganismen. Das vergleichsweise primitive Lebewesen erlaubt es, die zellulären Mechanismen zu studieren, die in der frühen Evolution ausgeprägt wurden, und die daher von allen höher entwickelten Tieren einschließlich dem Menschen verwendet werden.

Um die Apoptose verstehen zu können, müssen die Forscher zwei Probleme lösen. Erstens müssen Gene identifiziert werden, die an dem Prozess beteiligt sind. Da mit "C. elegans" detaillierte genetische Analysen durchgeführt werden können, stellt er ein ideales System dar, um Mutationen, also Abweichungen in Genen zu isolieren, die für den Zelltod benötigt werden. Aus den Auswirkungen dieser Mutationen können die Forscher Rückschlüsse auf das Funktionieren der Gene im gesunden Organismus ziehen.

Zweitens müssen die zellulären Auswirkungen genauestens mikroskopisch analysiert werden. Prof. Ralf Schnabel, Institut für Genetik der Technischen Universität Braunschweig, untersucht Mutanten mit Hilfe eines von ihm selbst mit entwickelten vierdimensionalen (4-D-) Mikroskops. "Das Instrument ermöglicht uns völlig neue Entdeckungen, da es neben der vollständigen räumlichen Darstellung auch die Entwicklung im Zeitverlauf dokumentiert", erläutert Schnabel. Auf diese Weise wurde von Juan Cabello, TU Braunschweig, eine sogenannte Null-Mutante in dem Gen "ced-10" ("cell death" Nummer 10) aufgespürt. In ihr fällt die biochemische Aktivität dieses Gens vollständig aus. Dies war der Schlüssel zu neuen komplexen genetischen Experimenten mit den sieben Genen, die zum Fressen der toten Zellen benötigt werden. Dabei wurde erstmals deutlich, dass alle Gene auf "ced-10" wirken, welches dann die fressende Zelle verformt, um die tote zu umschließen und aufzunehmen.

"Die Apoptose ist von großem medizinischen Interesse", so Schnabel. "Man würde gern verhindern, dass Zellen bei Herzinfakten, Hirnschlägen oder nach Unfällen sterben. Um Tumore zu bekämpfen wäre es ideal, wenn man die Krebszellen in die Apoptose drängen könnte. Unsere Arbeiten über "ced-10" könnten ein Schlüssel zum Erfolg sein. Pharmazeutische Unternehmen bemühen sich zwar mit ihren Methoden um Medikamente, die in die Apoptose eingreifen. Erstaunlicherweise arbeitet die Industrie aber nur wenig mit den Grundlagenforschern zusammen. Auch ist es in Deutschland zunehmend schwierig, von unabhängiger Seite Fördermittel für solche Arbeiten zu erhalten."

Bereits in einer früheren Veröffentlichung haben Prof. Ralf Schnabel und seine Kollegen mit dem 4-D-Mikroskop nachweisen können, dass geschwächte Zellen eine höhere Überlebenschance haben, wenn die Nachbarzellen daran gehindert werden, diese einzuschließen und unschädlich zu machen. Im Umkehrschluss bedeutet dies, dass diejenigen Gene, die für die Entsorgung zuständig sind, auch "aktiv" den Tod des kranken Gewebes herbeiführen können. Das Zusammenspiel der Zellen kann also ebenso über Leben und Tod entscheiden wie die Vorgänge innerhalb der sterbenden Zelle (NATURE, VOL 412 | 12 July 2001).

Kontakt:

Prof. Dr. Ralf Schnabel,
Institut für Genetik,
Technische Universität Braunschweig,
Tel.: 0531 / 391-5773,
E-Mail: r.schnabel@tu-braunschweig.de.

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de

Weitere Berichte zu: Apoptose Gen Prozess Zelle Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics