Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum sind Stammzellen so "allmächtig"?

02.03.2005


Wissenschaftler am Max-Planck-Institut für molekulare Genetik in Berlin erhalten Genehmigung zur Untersuchung humaner embryonaler Stammzellen


Embryonale Stammzellen sind für die Wissenschaft deshalb so interessant, weil sie die Fähigkeit besitzen, sich zu gänzlich unterschiedlichen Zelltypen zu entwickeln. Diese Eigenschaft wird als Pluripotenz bezeichnet. Im laufe der Entwicklung des Organismus werden die Zellen z.B. zu Nerven-, Muskel- oder Knorpelzellen und verlieren damit die Eigenschaft der Pluripotenz.

Was verleiht aber den embryonalen Stammzellen nun diese besondere Eigenschaft?


Dieser Frage wollen Forscher des Max-Planck-Institutes für molekulare Genetik in Berlin auf den Grund gehen. Nachdem ihnen nun vom Robert-Koch-Institut die Genehmigung für die Forschungsarbeiten mit humanen embryonalen Stammzellen erteilt worden ist, wollen sie die genetische Grundlage der Pluripotenz aufklären.

Oftmals kann man erst dann die Funktion eines Teils, hier eines Proteins, innerhalb eines komplizierten Netzwerkes erkennen, wenn eine Störung auftritt, d.h. z.B. ein Protein nicht mehr oder nur fehlerhaft gebildet wird. Will man also die Funktion der Gene bzw. deren Produkte, die Proteine, und deren Bedeutung für die Entwicklung eines Organismus genauer kennen lernen, wird die Produktion des jeweiligen Proteins gehemmt. Projektleiter Dr. James Adjaye, will so zunächst diejenigen Gene genauer unter die Lupe nehmen, von denen bekannt ist, dass sie sowohl in humanen embryonalen Stammzellen als auch in frühen menschlichen Embryonen aktiv sind. Von diesen sog. "Kandidatengenen" wird bereits seit einiger Zeit vermutet, dass sie an der Aufrechterhaltung von Pluripotenz beteiligt sind.

Ein weiterer wesentlicher Teil des Projektes besteht in der Computersimulation der Vorgänge in der Zelle, die für die Pluripotenz verantwortlich sind. In dieses Computermodell fließen alle experimentell gewonnen Daten. Ziel hierbei ist es zum einen, Zusammenhänge zwischen den einzelnen Daten schneller erkennen zu können und zum anderen, die Vorgänge in der Zelle, in diesem Falle der Pluripotenz, simulieren zu können.

Das übergeordnete Ziel der weltweiten Stammzellforschung ist es, eines Tages degenerierte Zellen des Menschen ersetzen zu können. Das Spektrum für den potentiellen Einsatz von humanen embryonalen Stammzellen ist sehr weit und reicht von der Therapie neurodegenerativer Erkrankungen wie Alzheimer oder Parkinson bis hin zu der Idee, ganze Organe mit Hilfe von ES-Zellen nachbilden zu können. Auch Abteilungsleiter Prof. Hans Lehrach, Direktor am Max-Planck-Institut für molekulare Genetik, ist überzeugt, dass das von der DFG geförderte Projekt zur Aufklärung der Pluripotenz das Potential besitzt, einen wesentlich Beitrag für die Stammzellforschung zu liefern.

Das Robert Koch-Institut (RKI) ist die zuständige Genehmigungsbehörde für Anträge auf Import und Verwendung von humanen embryonalen Stammzellen. Vor einer Genehmigung holt das RKI die Stellungnahme der Zentralen Ethik-Kommission für Stammzellforschung (ZES) ein. Angaben über die genehmigten Forschungsvorhaben sind in einem öffentlichen Register auf der Homepage des RKI unter www.rki.de einsehbar.

Kontakt:

Dr. Claudia Falter
Max-Planck-Institut für molekulare Genetik
Ihnestrasse 63-73
14195 Berlin
Tel.: 030-8413-1411
Fax: 030-8413-1380
Email: falter@molgen.mpg.de

Dr. Claudia Falter | idw
Weitere Informationen:
http://www.molgen.mpg.de

Weitere Berichte zu: Pluripotenz Protein RKI Stammzelle Stammzellforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie