Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Varianten eines einzelnen Gens sind für individuelle Bittergeschmackswahrnehmung verantwortlich

01.03.2005


Warum nehmen einige Menschen Bitterstoffe besser wahr als andere und bestimmen die Gene was wir schmecken? Neueste Studienergebnisse einer Forschergruppe unter der Leitung von Prof. Dr. Wolfgang Meyerhof vom Deutschen Institut für Ernährungsforschung (DIfE) Potsdam-Rehbrücke leisten einen wichtigen Beitrag zur Klärung dieser Fragen. Die Wissenschaftler zeigten, dass Variationen des humanen Bittergeschmacksrezeptorgens hTAS2R38 verschiedene Rezeptoren kodieren, deren "im Reagenzglas" gemessene Aktivität das individuelle Geschmacksempfinden von Probanden vorhersagt. (Bufe et al., 2005; Current Biology, Vol. 15, 322-327).



Die großen individuellen Unterschiede im Geschmacksempfinden haben vielfältige Ursachen. Neben sozialen oder psychologischen Faktoren spielen auch die Gene eine wichtige Rolle. Ein Beispiel hierfür ist die unterschiedliche Wahrnehmung der Bitterstoffe Phenylthiocarbamid (PTC) und Propylthiouracil (PROP), die auf Varianten (Haplotypen) des Bittergeschmacksrezeptorgens hTAS2R38 zurückzuführen ist. Die Mehrzahl der Europäer nimmt diese Substanzen bis zu 1000-mal besser wahr als die restlichen 30% der Bevölkerung. Interessanterweise wirkt sich das unterschiedliche Geschmacksempfinden für diese Stoffe auf das Ernährungsverhalten aus. Menschen, die den PTC/PROP-Geschmack besser wahrnehmen entwickeln eher eine Abneigung gegen Gemüsesorten wie Kohl oder Spinat als die "PTC/PROP-Nicht-Schmecker", während letztere zu einem erhöhten Fettkonsum und einem höheren Körpergewicht tendieren. Detaillierte Kenntnisse über die genetischen Faktoren, die das Geschmacksempfinden beeinflussen, könnten daher einen wichtigen Beitrag zum besseren Verständnis von Ernährungsgewohnheiten leisten.



Die Wissenschaftler um Meyerhof untersuchten daher die von den 5 Haplotypen des hTAS2R38 Gens kodierten Rezeptorvarianten in Zellkulturexperimenten. Sie stellten fest, dass sich die Rezeptorvarianten in 3 Untergruppen einordnen lassen. Bereits geringe Mengen der verwendeten Bitterstoffe aktivieren den häufig vorkommenden PAV-Typ. Im Gegensatz dazu ist der AVI-Typ kaum oder gar nicht sensitiv. Die drei anderen Rezeptortypen zeigen eine moderate Aktivität nach Stimulation durch PTC/PROP. Die "im Reagenzglas" gewonnenen Ergebnisse ließen sich direkt auf den Menschen übertragen. Geschmackstests, in welchen die Forscher genotypisierte Probanden auf ihr PTC/PROP-Geschmacksempfinden testeten, lieferten gleiche Resultate. Damit haben die Wissenschaftler einen direkten Nachweis erbracht, dass unterschiedliche, individuelle Geschmacksempfindungen durch Variationen in einem einzigen Gen bedingt sein können.

Das menschliche Genom enthält etwa 25 sogenannte TAS2R Gene, von denen man annimmt, dass sie Bittergeschmacksrezeptoren kodieren. Der humane TAS2R38 ist ein Rezeptor für Stoffe, die eine -N-C=S Gruppe enthalten und ist damit offenbar auf die Erkennung chemisch verwandter Substanzen abgestimmt. Andere Rezeptortypen wie z. B. hTAS2R10 sind sehr viel breiter auf ihre Bitterstoffe abgestimmt, denn es ist kein gemeinsames Strukturmotiv in ihren jeweiligen Bitterstoffen erkennbar.

Das Deutsche Institut für Ernährungsforschung (DIfE) Potsdam-Rehbrücke ist Mitglied der Leibniz-Gemeinschaft.Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Sie sind der wissenschaftlichen Exzellenz verpflichtet und pflegen intensive Kooperationen mit Hochschulen, Industrie und anderen Partnern im In- und Ausland. Das externe Begutachtungsverfahren der Leibniz-Gemeinschaft setzt Maßstäbe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiterinnen und Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro. Näheres unter www.leibniz-gemeinschaft.de.

Kontakt:

Dr. Gisela Olias/Dr. Gunda Backes
Referat Presse- und Öffentlichkeitsarbeit
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
Tel.: 033200 88 278/335
E-Mail: presse@mail.dife.de

Prof. Dr. Wolfgang Meyerhof
E-Mail: meyerhof@mail.dife.de
Tel: 033200 88 282

Dr. Bernd Bufe
E-Mail: bufe@mail.dife.de
Tel: 033200 88 564

Dr. Gunda Backes | idw
Weitere Informationen:
http://www.dife.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie