Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Apfelschalen

24.02.2005


Molekulare Kapsel: Helixförmiges Band mit geschlossenen Enden nimmt Gastmoleküle auf


Kinder finden es meist lustig, wenn wir es schaffen, einen Apfel ohne Absetzen zu schälen: Die Apfelschale ringelt sich dann als spiraliges Band über unsere Hand und kann auch wieder um den Apfel herumgewickelt werden. Eine solche "Apfelschale" haben französische Forscher nun im molekularen Maßstab hergestellt. Darin lässt sich ein kleines Wassermolekül "einwickeln", so dass es wie in einer Kapsel vollständig vom umgebenden Medium isoliert ist.

Winzige molekulare "Behälter", die andere Moleküle als "Gäste" aufnehmen können, sind von besonderem Interesse für Technik und Wissenschaft, etwa als Katalysatoren, Mikroreaktionskammern, Transportbehälter für pharmazeutische Wirkstoffe oder als Schutzhüllen für instabile Moleküle. Inzwischen sind bereits verschiedene Strategien etbliert, um solche Mini-Kapseln zu konstruieren. Ivan Huc und Joachim Garric (Institut Européen de Chimie et Biologie, Pessac) sowie Jean-Michel Léger (Laboratoire de Pharmacochimie, Bordeaux) haben mit ihrer "Apfelschale" nun einen neuartigen Ansatz entwickelt.


Und so funktioniert die Apfelschale: Die französischen Chemiker synthetisieren ein strangförmiges Molekül aus aromatischen Amin-Bausteinen - stickstoffhaltigen Kohlenstoffringen. Die Bausteine werden so gewählt, dass sich das Band zu einer Helix windet. Der entscheidende Trick dabei: Diese Helix ist nicht gleichmäßig, sondern hat in der Mitte einen wesentlich größeren Innendurchmesser als an den beiden Enden - wie eine normale Apfelschale. Den Innendurchmesser können die Forscher über die Größe der einzelnen Bausteine und die genaue Anordnung der Stickstoffatome innerhalb des Ringsystems gezielt einstellen, für den mittleren Part und die Enden des spiraligen Bandes wählen sie entsprechend unterschiedliche Bausteine aus. So entsteht eine Helix mit einer regelrechten Blase in der Mitte und Endstücken ohne Hohlraum, die die Blase verschließen. Fertig ist die Kapsel.

"Unsere Kapseln sind so ausgelegt, dass sie ein einzelnes Wassermolekül aufnehmen," sagt Huc. "Sie umschließen es vollständig und schirmen es so vom umgebenden organischen Lösungsmittel ab." Und wie kommt das Wasermolekül in die Kapsel hinein?Kernrsonanzspektrometrische Untersuchungen sprechen für die Theorie, dass sich die Helices von einem Ende her teilweise aufwickeln, das Wassermolekül einschlüpfen lassen und sich wieder schließen.

Ihr vielversprechendes Konzept wollen die Forscher nun ausdehnen. So arbeiten sie beispielsweise an größeren Kapseln, die auch größere oder aber mehrere Moleküle aufnehmen können.

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Apfelschale Baustein Helix Kapsel Molekül Wassermolekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics