Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Apfelschalen

24.02.2005


Molekulare Kapsel: Helixförmiges Band mit geschlossenen Enden nimmt Gastmoleküle auf


Kinder finden es meist lustig, wenn wir es schaffen, einen Apfel ohne Absetzen zu schälen: Die Apfelschale ringelt sich dann als spiraliges Band über unsere Hand und kann auch wieder um den Apfel herumgewickelt werden. Eine solche "Apfelschale" haben französische Forscher nun im molekularen Maßstab hergestellt. Darin lässt sich ein kleines Wassermolekül "einwickeln", so dass es wie in einer Kapsel vollständig vom umgebenden Medium isoliert ist.

Winzige molekulare "Behälter", die andere Moleküle als "Gäste" aufnehmen können, sind von besonderem Interesse für Technik und Wissenschaft, etwa als Katalysatoren, Mikroreaktionskammern, Transportbehälter für pharmazeutische Wirkstoffe oder als Schutzhüllen für instabile Moleküle. Inzwischen sind bereits verschiedene Strategien etbliert, um solche Mini-Kapseln zu konstruieren. Ivan Huc und Joachim Garric (Institut Européen de Chimie et Biologie, Pessac) sowie Jean-Michel Léger (Laboratoire de Pharmacochimie, Bordeaux) haben mit ihrer "Apfelschale" nun einen neuartigen Ansatz entwickelt.


Und so funktioniert die Apfelschale: Die französischen Chemiker synthetisieren ein strangförmiges Molekül aus aromatischen Amin-Bausteinen - stickstoffhaltigen Kohlenstoffringen. Die Bausteine werden so gewählt, dass sich das Band zu einer Helix windet. Der entscheidende Trick dabei: Diese Helix ist nicht gleichmäßig, sondern hat in der Mitte einen wesentlich größeren Innendurchmesser als an den beiden Enden - wie eine normale Apfelschale. Den Innendurchmesser können die Forscher über die Größe der einzelnen Bausteine und die genaue Anordnung der Stickstoffatome innerhalb des Ringsystems gezielt einstellen, für den mittleren Part und die Enden des spiraligen Bandes wählen sie entsprechend unterschiedliche Bausteine aus. So entsteht eine Helix mit einer regelrechten Blase in der Mitte und Endstücken ohne Hohlraum, die die Blase verschließen. Fertig ist die Kapsel.

"Unsere Kapseln sind so ausgelegt, dass sie ein einzelnes Wassermolekül aufnehmen," sagt Huc. "Sie umschließen es vollständig und schirmen es so vom umgebenden organischen Lösungsmittel ab." Und wie kommt das Wasermolekül in die Kapsel hinein?Kernrsonanzspektrometrische Untersuchungen sprechen für die Theorie, dass sich die Helices von einem Ende her teilweise aufwickeln, das Wassermolekül einschlüpfen lassen und sich wieder schließen.

Ihr vielversprechendes Konzept wollen die Forscher nun ausdehnen. So arbeiten sie beispielsweise an größeren Kapseln, die auch größere oder aber mehrere Moleküle aufnehmen können.

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Apfelschale Baustein Helix Kapsel Molekül Wassermolekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie