Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gliazellen bei der Bildung von Synapsen entscheidend

11.02.2005


Erkenntnisse sollen bessere Epilepsie-Behandlung ermöglichen



Wissenschafter der Stanford University School of Medicine haben entdeckt, dass auch Gliazellen eine entscheidende Rolle bei der Bildung von Synapsen während des Entwicklungsprozesses direkt nach der Geburt spielen. Bisher war nur bekannt, dass diese Zellen die Funktion der Neuronen im erwachsenen Gehirn unterstützen. Die neuen Einblicke in den normalen Vorgang der Bildung von Synapsen sollen eine verbesserte Behandlung von Drogenabhängigkeit und Epilepsie ermöglichen. Dabei handelt es sich um Krankheiten, die teilweise durch das Vorhandensein von zu vielen Synapsen gekennzeichnet sind. Die Kommunikation im Gehirn findet von einer Nervenzelle zur anderen über Synapsen statt. Diese Neuronenverbindungen bilden sich früh in der Gehirnentwicklung. Es wurde angenommen, dass ihre Bildung von den Nervenzellen selbst gelenkt wird. Die Ergebnisse der Studie wurden in dem Fachmagazin Cell veröffentlicht.



Gliazellen machen rund 90 Prozent der Zellen im Gehirn von Säugetieren aus. Bis vor kurzem konzentrierte sich die Wissenschaft auf ihre unterstützende Rolle. Das Team um Ben Barres entwickelte ein neues Verfahren zur Züchtung von Neuronen im Labor, das ohne Gliazellen auskommt. Die Forscher isolierten Proteine, die von den Gliazellen produziert wurden. Sie untersuchten in der Folge, was passiert, wenn diese Proteine einer Neuronenkultur hinzugefügt werden. Zwei der Proteine, Thrombospondin 1 und 2, führten zur Bildung von Synapsen. Diese Synapsen erwiesen sich allerdings als nicht voll funktionsfähig. Sie konnten Signale übertragen, aber waren nicht in der Lage sie zu empfangen.

Das Neuron, das das Signal überträgt, kann einen Neurotransmitter bilden. Das benachbarte Neuron, das das Signal empfängt, ist jedoch nicht in der Lage das Vorhandensein eines Neurotransmitters zu erkennen. Vollständig funktionsfähige Synapsen erfordern das Vorhandensein von Gliazellen. Laut Barres ist bekannt, dass die Gliazellen zumindest ein weiteres entscheidendes Protein produzieren, das man derzeit noch nicht identifiziert habe. Dieses unbekannte Protein ermöglicht dem empfangenden Neuron den Neurotransmitter zu entdecken, der von dem Neuron ausgeschickt wird, das bei der Bildung von Synapsen Signale überträgt.

In einem nächsten Schritt entwickelten die Wissenschafter einen Mäusestamm, dem die Fähigkeit Thrombospondin 1 und 2 zu bilden, fehlte. Die Gehirne diese Tiere wiesen 40 Prozent weniger Synapsen auf als jene normaler Mäuse. Gliazellen sondern diese Thrombospondine nur in den frühen Phasen der Gehirnentwicklung gleichzeitig mit der Bildung von Synapsen ab. Diese Erkenntnisse lassen den Schluss zu, dass die relativ geringe Fähigkeit des erwachsenen Gehirns neue Synapsen zu bilden, auf das Vorhandensein von nur geringen Mengen dieser Thrombospondine zurückzuführen sein könnte.

Michaela Monschein | pressetext.austria
Weitere Informationen:
http://med.stanford.edu
http://www.cell.com

Weitere Berichte zu: Gliazelle Neuron Protein Synapse Thrombospondin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise