Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Natur erfindet das Rad nur einmal

07.02.2005


Gene und Proteine, die Nerven wachsen lassen, steuern auch Blut- und Lymphgefäße, berichten Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried


Ephrine regulieren die Entwicklung der Lymphgefäße in der Haut. Die Abbildung zeigt ein normales Lymphgefässsystem an Tag1 nach der Geburt (obere Bildreihe) und am Tag 3 nach der Geburt (Bildreihe unten). Die Bilder in der linken Spalte (oben Tag 1, unten Tag 3 nach der Geburt) zeigen Lymphgefäße einer sich normal entwickelnden Maus. In der rechten Spalte (oben Tag 1, unten Tag 3 nach der Geburt) sind Aufnahmen der Lymphgefäße der ephrinB2 Mutante zu sehen. Das Fehlen von kapillaren Aussprossungen in der ephrinB2-Mutante an Tag 3 sind im rechten unteren Foto klar zu erkennen. Bild: Max-Planck-Institut für Neurobiologie



Während der Entwicklung eines Lebewesens bilden sich aus einzelnen Zellen spezialisierte Gewebe und Systeme. Dazu müssen die Zellen Informationen erhalten, wo sie im Körper später ihre Funktionen ausüben und mit welchen Zellen sie ein gemeinsames Netzwerk oder Gefäßsystem bilden sollen. Das erfolgt über ein ausgeklügeltes Signalsystem, dessen Funktionen man bisher hauptsächlich im Nervensystem studiert hatte. Inzwischen mehren sich Hinweise, dass die Gene und Proteine, die das Verkabeln von Nervenzellen regulieren, auch Blutgefäße dirigieren. Einen weiteren Baustein dazu liefern jetzt Wissenschaftler des Max-Planck-Instituts für Neurobiologie: Sie zeigen erstmals, dass die Entwicklung des Lymphgefäßsystems verschiedene Phasen durchläuft und seine Verzweigung nach ähnlichen Prinzipien erfolgt wie die Verästelung feiner Nervenfortsätze. Die Natur setzt offensichtlich gut funktionierende Signalsysteme mehrfach ein. Das Signal-Protein EphrinB2, das maßgeblich an der Lenkung von Nervenfortsätzen beteiligt ist, ist auch essentiell für die Ausbildung eines funktionierenden Lymphgefäßsystems (Genes & Development, 1. Februar 2005).



Zellen, die am Aufbau von Blutgefäßen und Nerven-Netzwerken beteiligt sind, müssen miteinander in Kontakt treten, um sich zu vernetzen oder ihren Weg zu finden. Dazu bilden die Zellen während ihres Wachstums unterschiedliche Fortsätze aus, die durch verschiedene Faktoren gesteuert werden. Nervenzellen bilden so genannte Axone, an deren Spitze sich ein Wachstumskegel befindet, der die Umgebung nach Signalen ertastet. Vom Wachstumskegel gehen fingerförmige Fortsätze (Filopodien) aus, die mit Empfänger-Proteinen für chemische Signale besetzt sind.

Die Max-Planck-Wissenschaftler um Rüdiger Klein haben sich auf die "Sender-Proteine" (Ephrine) und die "Empfänger-Proteine" (Eph-Rezeptoren) spezialisiert. Über eine Verankerung in der Zellmembran sitzen diese Proteine fest auf der Oberfläche oder in der Zellmembran der Zellen, die sich begegnen. Jeweils ein Ephrin-Ligand der "Weg-suchenden" Zelle kann mit einem Eph-Rezeptor einer "Weg-weisenden" Zelle binden oder umgekehrt. Sie bilden einen so genannten Ephrin/Eph-Komplex, eine feste Verbindung, über die das Rezeptorprotein - wie eine Antenne - ein Signal in das Innere jener Zelle weitergibt, auf der es sitzt. Dadurch werden zelluläre Prozesse ausgelöst, die schließlich dazu führen, dass sich die Zellen oder ihre Fortsätze entweder abstoßen oder anziehen. Abstoßung und Anziehung sind also Voraussetzung dafür, dass die richtigen Zellen zueinander finden.

Bereits in den späten 1990er Jahren hatten Wissenschaftler um Rüdiger Klein, damals noch am European Molecular Biology Laboratory (EMBL) in Heidelberg, erste Gemeinsamkeiten zwischen der Lenkung von Nervenfortsätzen und der Blutgefäßentwicklung entdeckt. Zeitgleich mit David Anderson’s Arbeitsgruppe am Caltech in Kalifornien zeigte Rüdiger Klein’s Team, dass EphrinB2 von Arterien gebildet wird, nicht aber von Venen, und dass EphrinB2 essentiell für die Ausbildung eines funktionierenden Blutgefäßsystems ist. Während der Entwicklung des embryonalen Blutgefäßsystems kommt es zu umfangreichen Umgestaltungen - neue Kapillaren sprossen ins Gewebe aus, andere werden wiederum abgebaut. EphrinB2 reguliert die Neubildung und das Wachstum von Kapillaren, ähnlich wie Nervenfortsätze im Gehirn.

In ihrer neuesten Arbeit haben Taija Mäkinen, George Wilkinson und Rüdiger Klein nun entdeckt, dass Lymphgefäße gleichartigen Umgestaltungsprozessen unterworfen sind, wie man sie bereits bei Blutgefäßen kennt. Einzelne Zellen, die die Gefäße auskleiden, so genannte Endothelzellen, lösen sich aus dem Zellverband und bilden - ähnlich wie die neuronalen Wachstumskegel bei Axonen - lange Filopodien, mit denen sie offensichtlich chemische Signale aus der Umgebung ertasten. Die Filopodien-tragenden Zellen sind die treibende Kraft, neue Lymphkapillaren zu bilden. Ephrine und Eph-Rezeptoren sind auch an der Umgestaltung von Lymphgefäßen im Hautgewebe von Mäusen beteiligt und kontrollieren dadurch den Transport der Lymphe zurück in den Blutkreislauf.

Rüdiger Kleins Team hat in Zusammenarbeit mit Wissenschaftlern aus Finnland, USA, Großbritannien und der Schweiz die Entwicklung von Mäusen untersucht, bei denen das Gen für die korrekte Struktur von EphrinB2 verändert wurde (knock-in Mäuse). Wurde eine fehlerhafte Form von EphrinB2 gebildet, zeigten die Mäuse ein stark verringertes Lymphkapillarsystem der Haut, Aufblähungen der großen Lymphgefäße mit Fehlbildungen in den Gefäßklappen und Rückstau von Lymphe im Brustkorb. Die Lebensfähigkeit dieser Mäuse war dadurch stark eingeschränkt. Da die Forscher verschiedene knock-in Mäuse untersucht hatten, konnten sie auch feststellen, welche Merkmale des Ephrin-Proteins unbedingt vorhanden sein mussten, damit die Signalwege und damit auch die Gefäße korrekt ausgebildet werden.

Die Entdeckung, dass auch das Lymphgefäßsystem durch Ephrine umfangreichen Umgestaltungen unterworfen wird, ist ein weiteres Beispiel, wie Blut- und Lymphgefäßsysteme Mechanismen kopiert haben, die sich bereits erfolgreich bei der Vernetzung von Nervenzellen entwickelt hatten. Mit anderen Worten: Die Natur setzt bewährte Systeme mehrfach ein und hat nicht für jeden Entwicklungsbereich das Rad neu erfunden.

Originalveröffentlichung:

Taija Mäkinen, Ralf H. Adams, John Bailey, Qiang Lu, Andrew Ziemiecki, Kari Alitalo, Rüdiger Klein, and George A. Wilkinson
PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature
Genes & Development. 2005 19: 397-410

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Test für seltene Immunschwäche
23.08.2017 | Universität Basel

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen