Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Natur erfindet das Rad nur einmal

07.02.2005


Gene und Proteine, die Nerven wachsen lassen, steuern auch Blut- und Lymphgefäße, berichten Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried


Ephrine regulieren die Entwicklung der Lymphgefäße in der Haut. Die Abbildung zeigt ein normales Lymphgefässsystem an Tag1 nach der Geburt (obere Bildreihe) und am Tag 3 nach der Geburt (Bildreihe unten). Die Bilder in der linken Spalte (oben Tag 1, unten Tag 3 nach der Geburt) zeigen Lymphgefäße einer sich normal entwickelnden Maus. In der rechten Spalte (oben Tag 1, unten Tag 3 nach der Geburt) sind Aufnahmen der Lymphgefäße der ephrinB2 Mutante zu sehen. Das Fehlen von kapillaren Aussprossungen in der ephrinB2-Mutante an Tag 3 sind im rechten unteren Foto klar zu erkennen. Bild: Max-Planck-Institut für Neurobiologie



Während der Entwicklung eines Lebewesens bilden sich aus einzelnen Zellen spezialisierte Gewebe und Systeme. Dazu müssen die Zellen Informationen erhalten, wo sie im Körper später ihre Funktionen ausüben und mit welchen Zellen sie ein gemeinsames Netzwerk oder Gefäßsystem bilden sollen. Das erfolgt über ein ausgeklügeltes Signalsystem, dessen Funktionen man bisher hauptsächlich im Nervensystem studiert hatte. Inzwischen mehren sich Hinweise, dass die Gene und Proteine, die das Verkabeln von Nervenzellen regulieren, auch Blutgefäße dirigieren. Einen weiteren Baustein dazu liefern jetzt Wissenschaftler des Max-Planck-Instituts für Neurobiologie: Sie zeigen erstmals, dass die Entwicklung des Lymphgefäßsystems verschiedene Phasen durchläuft und seine Verzweigung nach ähnlichen Prinzipien erfolgt wie die Verästelung feiner Nervenfortsätze. Die Natur setzt offensichtlich gut funktionierende Signalsysteme mehrfach ein. Das Signal-Protein EphrinB2, das maßgeblich an der Lenkung von Nervenfortsätzen beteiligt ist, ist auch essentiell für die Ausbildung eines funktionierenden Lymphgefäßsystems (Genes & Development, 1. Februar 2005).



Zellen, die am Aufbau von Blutgefäßen und Nerven-Netzwerken beteiligt sind, müssen miteinander in Kontakt treten, um sich zu vernetzen oder ihren Weg zu finden. Dazu bilden die Zellen während ihres Wachstums unterschiedliche Fortsätze aus, die durch verschiedene Faktoren gesteuert werden. Nervenzellen bilden so genannte Axone, an deren Spitze sich ein Wachstumskegel befindet, der die Umgebung nach Signalen ertastet. Vom Wachstumskegel gehen fingerförmige Fortsätze (Filopodien) aus, die mit Empfänger-Proteinen für chemische Signale besetzt sind.

Die Max-Planck-Wissenschaftler um Rüdiger Klein haben sich auf die "Sender-Proteine" (Ephrine) und die "Empfänger-Proteine" (Eph-Rezeptoren) spezialisiert. Über eine Verankerung in der Zellmembran sitzen diese Proteine fest auf der Oberfläche oder in der Zellmembran der Zellen, die sich begegnen. Jeweils ein Ephrin-Ligand der "Weg-suchenden" Zelle kann mit einem Eph-Rezeptor einer "Weg-weisenden" Zelle binden oder umgekehrt. Sie bilden einen so genannten Ephrin/Eph-Komplex, eine feste Verbindung, über die das Rezeptorprotein - wie eine Antenne - ein Signal in das Innere jener Zelle weitergibt, auf der es sitzt. Dadurch werden zelluläre Prozesse ausgelöst, die schließlich dazu führen, dass sich die Zellen oder ihre Fortsätze entweder abstoßen oder anziehen. Abstoßung und Anziehung sind also Voraussetzung dafür, dass die richtigen Zellen zueinander finden.

Bereits in den späten 1990er Jahren hatten Wissenschaftler um Rüdiger Klein, damals noch am European Molecular Biology Laboratory (EMBL) in Heidelberg, erste Gemeinsamkeiten zwischen der Lenkung von Nervenfortsätzen und der Blutgefäßentwicklung entdeckt. Zeitgleich mit David Anderson’s Arbeitsgruppe am Caltech in Kalifornien zeigte Rüdiger Klein’s Team, dass EphrinB2 von Arterien gebildet wird, nicht aber von Venen, und dass EphrinB2 essentiell für die Ausbildung eines funktionierenden Blutgefäßsystems ist. Während der Entwicklung des embryonalen Blutgefäßsystems kommt es zu umfangreichen Umgestaltungen - neue Kapillaren sprossen ins Gewebe aus, andere werden wiederum abgebaut. EphrinB2 reguliert die Neubildung und das Wachstum von Kapillaren, ähnlich wie Nervenfortsätze im Gehirn.

In ihrer neuesten Arbeit haben Taija Mäkinen, George Wilkinson und Rüdiger Klein nun entdeckt, dass Lymphgefäße gleichartigen Umgestaltungsprozessen unterworfen sind, wie man sie bereits bei Blutgefäßen kennt. Einzelne Zellen, die die Gefäße auskleiden, so genannte Endothelzellen, lösen sich aus dem Zellverband und bilden - ähnlich wie die neuronalen Wachstumskegel bei Axonen - lange Filopodien, mit denen sie offensichtlich chemische Signale aus der Umgebung ertasten. Die Filopodien-tragenden Zellen sind die treibende Kraft, neue Lymphkapillaren zu bilden. Ephrine und Eph-Rezeptoren sind auch an der Umgestaltung von Lymphgefäßen im Hautgewebe von Mäusen beteiligt und kontrollieren dadurch den Transport der Lymphe zurück in den Blutkreislauf.

Rüdiger Kleins Team hat in Zusammenarbeit mit Wissenschaftlern aus Finnland, USA, Großbritannien und der Schweiz die Entwicklung von Mäusen untersucht, bei denen das Gen für die korrekte Struktur von EphrinB2 verändert wurde (knock-in Mäuse). Wurde eine fehlerhafte Form von EphrinB2 gebildet, zeigten die Mäuse ein stark verringertes Lymphkapillarsystem der Haut, Aufblähungen der großen Lymphgefäße mit Fehlbildungen in den Gefäßklappen und Rückstau von Lymphe im Brustkorb. Die Lebensfähigkeit dieser Mäuse war dadurch stark eingeschränkt. Da die Forscher verschiedene knock-in Mäuse untersucht hatten, konnten sie auch feststellen, welche Merkmale des Ephrin-Proteins unbedingt vorhanden sein mussten, damit die Signalwege und damit auch die Gefäße korrekt ausgebildet werden.

Die Entdeckung, dass auch das Lymphgefäßsystem durch Ephrine umfangreichen Umgestaltungen unterworfen wird, ist ein weiteres Beispiel, wie Blut- und Lymphgefäßsysteme Mechanismen kopiert haben, die sich bereits erfolgreich bei der Vernetzung von Nervenzellen entwickelt hatten. Mit anderen Worten: Die Natur setzt bewährte Systeme mehrfach ein und hat nicht für jeden Entwicklungsbereich das Rad neu erfunden.

Originalveröffentlichung:

Taija Mäkinen, Ralf H. Adams, John Bailey, Qiang Lu, Andrew Ziemiecki, Kari Alitalo, Rüdiger Klein, and George A. Wilkinson
PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature
Genes & Development. 2005 19: 397-410

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive