Netzwerke in Expression und Erhalt des Genoms

Zu Beginn des Jahres hat der Sonderforschungsbereich (SFB646) unter Beteiligung des GSF – Forschungszentrums für Umwelt und Gesundheit in Neuherberg seine Arbeit aufgenommen. Zusammen mit Wissenschaftlerinnen und Wissenschaftlern der Ludwig-Maximilians-Universität München und des Max-Planck-Instituts für Biochemie in Martinsried untersuchen sie das Zusammenspiel molekularer Maschinen der Genexpression und Genomerhaltung.

Seitens der GSF beteiligen sich das Institut für Molekulare Strahlenbiologie (Prof. Dr. Jean-Marie Buerstedde), die Abteilung Genexpression (PD Dr. Michael Meisterernst) und eine Nachwuchsgruppe aus der Abteilung Genvektoren (Dr. Aloys Schepers) mit Teilprojekten zur DNA-Rekombination, DNA-Transkription und DNA-Replikation.

Genkontrolle und Genomerhaltungsmechanismen, insbesondere die Gentranskription, Prozessierung der RNA und ihr Transport aus dem Kern, sind im Zellkern eng miteinander verknüpft. Diese werden im SFB von Chemikern, Biologen und Physikern interdisziplinär untersucht. „Die Fragestellungen sind von grundlegender Bedeutung für das Funktionieren menschlicher Zellen und werden insbesondere die Gesundheitsforschung prägen“, erklärt Meisterernst.

Ein großer Pluspunkt ist dabei die räumliche Nähe der beteiligten Forschungseinrichtungen: Die wissenschaftliche Kompetenz konzentriert sich dabei auf den Campus Großhadern/Martinsried. „Woh l nur sehr wenige deutsche Standorte bieten eine derart hohe Dichte an Forschern, die an solchen Themen arbeiten – und München gehört mit Sicherheit dazu“, so SFB-Sprecher Professor Ralf-Peter Jansen vom Genzentrum der Ludwig-Maximilians-Universität (LMU) München. Als externer Partner ist außerdem die Universität Zürich beteiligt. Damit findet eine nunmehr 10-jährige Zusammenarbeit zwischen dem Hämatologikum der GSF und dem Genzentrum der LMU einen neuen wissenschaftlichen Rahmen“ ergänzt Meisterernst, der selbst einst als Gruppenleiter am Genzentrum arbeitete.

Schwerpunkt der geplanten Arbeiten ist das Zusammenspiel von Vorgängen in der Zelle, die mit dem Genom assoziiert sind. Der Prozess beginnt mit der Umsetzung der genetischen Information der DNA in ein Botenmolekül und dessen Prozessierung zur reifen mRNA, die aus dem Zellkern exportiert wird. „Für die genetische Stabilität des Genoms ist eine möglichst fehlerfreie Verdopplung des Genoms bei der Zellteilung (die DNA-Replikation) und die anschließende Aufteilung der Chromosomen auf die beiden Tochterzellen von entscheidender Bedeutung. Schepers hebt hervor: „Beide Prozesse sind eng mit einer effektiven DNA-Reparatur verbunden“. Diese nukleären Prozesse und die DNA-Rekombination (der Austausch von genetischem Material zwischen zwei Chromosomen) bilden den zweiten Schwerpunkt des SFB.

Untersuchungen der letzten Jahre ergaben, dass diese Vorgänge oft innerhalb von sehr großen Multiproteinkomplexen kontrolliert werden, welche untereinander eng vernetzt sind. Der neue SFB will die Dynamik und Koordination dieser komplexen zellulären Interaktionen untersuchen. „Ein besseres Verständnis dieser Vorgänge ist gerade auch für die zentralen Fragestellungen der GSF in den Disziplinen Strahlenbiologie, Toxikologie und Immunologie wichtig“, so Buerstedde.

Media Contact

Gertrud Aßmann idw

Weitere Informationen:

http://www.gsf.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer