Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellskelett macht Bakterien mobil

21.01.2005


Ausschnitt aus dem Zellskelett des Bakteriums Spiroplasma melliferum. Links und Mitte: Überlagerte Schnitte aus einer 3 D-Rekonstruktion sowie die entsprechende 3 D-Darstellung eines Teils einer S. melliferum-Zelle, die den Aufbau und Verlauf des Zellskeletts veranschaulichen. Dieses besteht aus zwei äußeren Bändern aus dicken Filamenten (im mittleren Bild grün und rot dargestellt) und einem dazwischen liegenden Band aus dünnen Filamenten (im mittleren Bild violett dargestellt). Rechts: Profile der Filament-Grauwerte, die die Anzahl, sowie die Abstände zwischen den einzelnen Filamenten angeben. Die beiden äußeren Bänder bestehen aus 5 dicken Filamenten mit einem Abstand von 11 Nanometer (im Bild rechts oben), während das mittlere Band aus 9 dünnen Filamenten mit einem Abstand von vier Nanometer aufgebaut ist (im Bild rechts unten). Bild: Max-Planck-Institut für Biochemie


Ein Forscherteam von MPI für Biochemie und EMBL enthüllt das Zellskelett extrem kleiner Bakterien und die Funktionsweise ihrer spiralförmigen Fortbewegung


Dreidimensionale kryoelektronenmikroskopische Bilder aus dem Max-Planck-Institut für Biochemie und dem European Molecular Biology Laboratory (EMBL) liefern jetzt erstmals eindeutige Beweise für das Vorhandensein und die genaue Struktur des Zellskeletts eines der kleinsten Lebewesen, des Mycoplasmas Spiroplasma melliferum. Mit diesen Einblicken sind die Wissenschaftler in der Lage, bisherige Modelle und Theorien über den Aufbau dieses Zellskeletts und dessen Funktionsweise bei der spiralförmigen Fortbewegung dieser Mikroorganismen zu verwerfen bzw. mit neuen Details zu ergänzen. In der neuesten Ausgabe von "Science" veröffentlichen die Wissenschaftler aus Martinsried und Heidelberg erstmalig ihre neuen Bilder und Ergebnisse (Science, 21. Januar 2005).

Lange Zeit nahm man an, dass nur Eukaryonten, also Organismen, deren Zellen einen Kern enthalten, über ein Zellskelett verfügen, das für die Stabilität und Formgebung maßgebend ist und auch eine wichtige Rolle bei ihrer Fortbewegung spielt. Spätestens mit der Entdeckung der Bakteriengruppe der Mycoplasmen wurde dies jedoch in Frage gestellt. Diese Organismen weisen trotz fehlender Zellwand, die ursprünglich als formgebend bei Bakterien angesehen wurde, vielgestaltige Morphologien auf und können sich fortbewegen, obwohl ihnen dafür die typischen Zellanhänge, wie beispielsweise Geißeln, fehlen. Die Vermutung, dass auch Bakterien ein Zellskelett enthalten, wurde schließlich durch die Entdeckung von Proteinen, die dem eukaryontischen Strukturprotein Aktin sehr ähneln, bestärkt. Doch trotz zunehmender Forschung auf diesem Gebiet gelang es bislang nicht, den genauen strukturellen Aufbau und Verlauf dieses Zellskeletts innerhalb eines Bakteriums naturgetreu sichtbar zu machen. In bisherigen Studien zur Aufklärung der Strukturelemente von Spiroplasma wurden die Zellen aufgelöst und das Zellskelett isoliert. Andere Studien haben mit immunfluoreszenz-mikroskopischen Methoden versucht, die molekulare Zusammensetzung des Gerüsts des Winzlings zu erkunden. Beides sind Eingriffe, die entweder die lebende Zelle zerstören oder in unnatürlicher Weise verändern.


Erst mit der Entwicklung der Kryo-Elektronentomographie ist es möglich geworden, dreidimensionale Strukturen innerhalb einer intakten Zelle im schockgefrorenen Zustand (bei minus 196 °C) mit einer Auflösung von bis zu 4 Nanometer (1 Nanometer = 1 Millionstel Millimeter) zu visualisieren und detailliert zu beschreiben. Zellbestandteile, wie große Molekülkomplexe oder Organellen, sowie das eukaryontische Zellskelett haben die Wissenschaftler der Abteilung Molekulare Strukturbiologie am Max-Planck-Institut für Biochemie mit dieser neuen elektronenmikroskopischen Technik bereits erfolgreich untersucht und damit sowohl der Zellbiologie als auch der Strukturbiologie völlig neue Erkenntnisse über die Kommunikation und Wechselwirkung von verschiedenen Molekülkomplexen und Zellorganellen im Inneren einer Zelle gegeben (vgl. MPG-Pressemitteilungen [1], [2], [3]). Jetzt haben sich die Wissenschaftler daran gewagt, mit ihrer Technik auch den Aufbau des bakteriellen Zellskeletts und damit die molekularen Hintergründe für die spiralförmige Bewegung spezieller Mikroorganismen aufzuklären.

Im Rahmen ihrer Doktorarbeit hat Julia Kürner rund ein Jahr lang Daten und Bilder am Elektronenmikroskop gesammelt, die sie jetzt als veranschaulichende 3 D-Rekonstruktionen des Skeletts von Spiroplasma melliferum in der renommierten Fachzeitschrift Science veröffentlicht. Betreut und unterstützt wurde ihre Arbeit von Prof. Wolfgang Baumeister, Direktor am Max-Planck-Institut für Biochemie, und Achilleas S. Frangakis, ehemals Mitarbeiter der Abteilung von Baumeister und jetzt Arbeitsgruppenleiter am European Molecular Biology Laboratory (EMBL) in Heidelberg.

Das stabförmige Bakterium S. melliferum gehört zu der Gruppe der Mycoplasmen, die nur etwa ein Viertel der Größe von Bakterien (ca. 450 Millionstel Millimeter) besitzen und damit zu den kleinsten bekannten Mikroorganismen zählen. Zu den Mycoplasmen gehören auch Erreger von Luftwegserkrankungen bei Mensch und Tier, wie Mycoplasma pneumoniae, ein Erreger der Lungenentzündung. Ihre winzige Größe macht die Mycoplasmen zu einem idealen Untersuchungsobjekt für die Kryo-Elektronentomographie.

Julia Kürner konnte jetzt Details der Struktur des Zellskeletts mit hoher Auflösung sichtbar machen und damit völlig neue Erkenntnisse liefern. Bisher hatte man angenommen, dass das Skelett von S. melliferum aus einem Band aus 6 oder 7 miteinander verbundenen Proteinsträngen, so genannten Filamenten, besteht, welche sich in einem Abstand von etwa 10 Nanometer zueinander spiralförmig entlang der Zellmembran durch die gesamte Zelle erstrecken. Zudem ging man bisher davon aus, dass diese Filamente aus nur einem Proteinkomplex mit identischen Untereinheiten, dem sogenannten "Fibril"-Protein, aufgebaut sind.

Doch diese Lehrmeinung muss jetzt revidiert werden. Julia Kürner konnte zeigen, dass diese Bakterien zwei unterschiedliche Filamente besitzen, die in drei unterschiedlich breiten, parallelen Bändern angeordnet und untereinander und mit der Zellmembran verbunden sind. Dabei bestehen die beiden äußeren Filamentbänder aus jeweils fünf dickeren Filamenten mit einem Abstand von 11 Nanometer zueinander, während das dritte, dazwischen liegende Filamentband von neun dünneren Filamenten mit einem Abstand von nur vier Nanometer zueinander gebildet wird (s. Abb. und Film im Internet [4]).

Da die Martinsrieder Strukturbiologen ganz offensichtlich zwei verschiedene Proteinstrukturen ("dicke" und "dünne") fanden, isolierten sie die Filamente aus den Zellen, um sie weiter elektronenmikroskopisch und biochemisch untersuchen zu können. Dabei fanden sie heraus, dass die dickeren Filamente mit einem Durchmesser von etwa 10 Nanometer durchaus paarweise aufgebaut sind und von dem "Fibril"-Protein gebildet werden. Aufgrund der Instabilität der dünneren Filamente konnte dessen Struktur im isolierten Zustand nicht näher elektronenmikroskopisch untersucht werden. Biochemische Experimente der Max-Planck-Wissenschaftler zeigten jedoch, dass neben dem "Fibril"-Protein auch das Aktin-ähnliche Protein MreB in S. melliferum vorkommt. Unterstützt durch Erkenntnisse anderer Forscher nehmen sie daher an, dass das Protein MreB das innere Filamentband des Zellskeletts dieser Zellen bildet.

Basierend auf ihren neu gewonnenen strukturellen Ergebnissen konnten Kürner, Frangakis und Baumeister zudem klären, auf welche Weise das Zellskelett von S. melliferum dessen Fortbewegung ermöglicht und diese auch simulieren. Die spiralförmige Schwimmbewegung wird durch koordinierte Längenänderungen der beiden äußeren Filamentbänder im Verhältnis zu dem inneren Filamentband ermöglicht. Durch diese Bewegung, die letztlich auch zu einer Änderung der Rotationsrichtung der Zelle führt, erfährt die Zelle einen Antrieb und kann sich fortbewegen. Zu dieser Theorie haben die Forscher eine Computer-Simulation erzeugt, die diese Funktionsweise besser veranschaulicht und als Film im Internet [4] zu sehen ist.

Die Arbeit von Kürner und ihren Kollegen zeigt, dass Kryo-Elektronentomographie in Kombination mit biochemischen Untersuchungen und Computer-Simulationen eingesetzt werden kann, um Struktur und Funktion von Zellsystemen gleichzeitig aufzuklären und damit bisher ungelöste Zusammenhänge zu erschließen.

[1] MPG-Pressemitteilung "3-D-Einblicke in den intakten Zellkern" vom 29. Oktober 2004
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20041028/

[2] MPG-Presseinformation "Herpes-Virus in 3-D" vom 20. November 2003
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2003/pressemitteilung200311191/

[3] MPG-Presseinformation "Live-Schaltung ins Zellinnere" vom 8. November 2002
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2002/pri02114.htm

[4] Filme im Internet: Nach Registrierung unter www.eurekalert.org können die Filme kostenlos eingesehen werden
www.eurekalert.org/

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Bakterium Biochemie Filamente Mycoplasmen Nanometer Zelle Zellskelett

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie