Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Datenverarbeitung

04.07.2001


Computer der übernächsten Generation: Moleküle statt Schaltkreise?

So wie wir heute über "vorsintflutige" Rechner schmunzeln, die noch mit Röhren arbeiteten, werden unsere Kinder oder Enkel für unsere heutigen Computer nur ein Kopfschütteln übrig haben. Denn soviel ist klar: Der Siliziumchip als Baueinheit stößt langsam an seine Grenzen. Eine signifikante Steigerung der Rechenleistung ist nur mit anderen Technologien möglich. Eine der Zukunftsvisionen ist der Rechner auf Basis von Molekülen, die elektronische Bauteile wie Schalter und Drähte ersetzen.

Noch einen Schritt weiter gehen die Vorstellungen einer israelisch-deutschen Forschergruppe: Ein einzelnes isoliertes Molekül soll die Funktion eines gesamten logischen Schaltkreises übernehmen. Das hört sich zunächst nach komplizierten Molekülarchitekturen an, die erst mit ausgeklügelten Synthesestrategien hergestellt werden müssen. Offenbar geht es aber wesentlich einfacher: Auch gängige, simpel aufgebaute Moleküle können das Zeug zum logischen Gitter in sich tragen - man muss molekulare Phänomene nur einmal aus einem anderen Blickwinkel betrachten.

R. D. Levine vom Fritz Haber Research Center for Molecular Dynamics der Hebrew University in Jerusalem hat ein erstes Beispiel für ein "logisches" Molekül gefunden. Zusammen mit einem Team um Karl L. Kampa, Max-Planck-Institut für Quantenoptik in Garching, hat er eine an sich altbekannte Reaktion der Salpetersäure neu interpretiert: Wird ein Salpetersäuremolekül erst mit Infrarotlicht (IR) und kurz darauf mit ultraviolettem Licht (UV) bestrahlt, zerfällt es in zwei Bruchstücke. Die überschüssige Energie wird dabei in Form von Fluoreszenz wieder abgegeben.

Durch die Brille der Boolschen Algebra betrachtet ist das Experiment ein Analogon für den logischen Operator UND. Denn nur wenn das Molekül sowohl die "Information" IR-Blitz als auch die "Information" UV-Blitz erhält, sendet es ein Fluoreszenzsignal als Antwort.

Nun kann man noch eine zusätzliche Variable ins Spiel bringen, indem man die Reihenfolge der Blitze, UV und IR, vertauscht. Liegt die zeitliche Verzögerung zwischen den Blitzen in der Größenordnung weniger Pikosekunden (10-12 s), kann man beide Fälle anhand der Intensität der Fluoreszenz unterscheiden. Der resultierende logische Schaltkreis ist eine komplexe Verknüpfung dreier UND- und eines NICHT-Gitters.

Einen kleinen Schönheitsfehler hat der beschriebene "molekulare Schaltkreis" allerdings noch: Das Molekül wird bei der "Datenübertragung" zerstört. Levine und seine Kollegen haben aber schon andere Kandidaten im Auge, die sich innerhalb von Pikosekunden regenerieren lassen.


Kontakt:

Prof. Dr.R.D. Levine
The Fritz Haber Research Center for Molecular Dynamics
The Hebrew University
Jerusalem 91904
Israel

Fax: (+972) 2-651-3742

E-Mail: rafi@fh.huji.ac.il


Quelle: Angewandte Chemie 2001, 113 (13), 2580-2582
Hrsg.: Gesellschaft Deutscher Chemiker (GDCh)

Dr. Kurt Begitt | idw

Weitere Berichte zu: Molecular Molekül Schaltkreis

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics