Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höchstauflösende optische Mikroskopie an lebenden Zellen

18.01.2005


Verstärkung der apparativen Infrastruktur in den Lebenswissenschaften

Untersuchungen biomolekularer Wechselwirkungen und Funktionen innerhalb der lebenden Zelle werden in der lebenswissenschaftlichen Forschung der nächsten Jahre im Zentrum des Interesses stehen. Experimente zur Untersuchung biomolekularer Prozesse wurden bislang bevorzugt außerhalb der Zelle, in vitro, möglichst mit aufgereinigten Präparationen durchgeführt, was den klaren Vorteil hat, daß man die Versuchsbedingungen präzise einstellen kann. Jedoch kann man nur durch In-vivo-Experimente an lebenden Zellen sicherstellen, daß man einen biomolekularen Prozeß, beispielsweise eine Protein-Protein-Wechselwirkung, tatsächlich im physiologisch relevanten Kontext untersucht. In den letzten Jahren wurden große Anstrengungen unternommen, Methoden zur direkten Beobachtung molekularer Prozesse an lebenden Zellen weiterzuentwickeln. Der Lichtmikroskopie kommt hier eine zentrale Bedeutung zu, da man mit sichtbarem Licht lebende Zellen über viele Stunden hinweg zeitaufgelöst beobachten kann, ohne die darin kontinuierlich ablaufenden Prozesse nennenswert zu stören. Besonders wichtig ist die Fluoreszenzmikroskopie mit sichtbarem Licht, da eine Vielzahl von Techniken zur Verfügung steht, mit der man subzelluläre Strukturen wie Proteine, Zellorganellen, oder Membranen gezielt anfärben und damit von anderen Strukturen gut unterscheidbar abheben kann.

Die Fluoreszenzmikroskopie ist zudem eine extrem empfindliche Methode, mit der sich sogar einzelne Fluoreszenzlicht emittierende Moleküle beobachten lassen. Moderne Spielarten der Fluoreszenzmikroskopie sind die konfokale und Multiphotonenmikroskopie, mit denen sich Strukturen von Zellen und Geweben in allen drei Raumdimensionen auflösen lassen. Ferner steht zur quantitativen Erfassung struktureller und dynamischer Prozesse ein Baukasten leistungsfähiger analytischer Methoden zur Verfügung, wie zum Beispiel das Fluoreszenzlebensdauer-Imaging (FLIM) und die Fluoreszenzkorrelationsspektroskopie (FCS). An der Universität Ulm ist die Weiterentwicklung und Anwendung fluoreszenzmikroskopischer Methoden ein Forschungsschwerpunkt der Abteilung Biophysik (Leiter Prof. Dr. Gerd Ulrich Nienhaus).

Ein Nachteil der konventionellen Lichtmikroskopie besteht in ihrer begrenzten räumlichen Auflösung. Schon im Jahre 1873 hat der Physiker Ernst Abbe gezeigt, daß bei Verwendung von sichtbarem Licht Objekte, die enger als 200 Nanometer in der Fokalebene und 500 Nanometer entlang der optischen Achse des Mikroskops beieinanderstehen, nicht mehr separat aufgelöst werden können. Wesentliche Strukturen der Zelle sind aber deutlich kleiner und verschließen sich damit der Beobachtung mit konventionellen Lichtmikroskopen. In den letzten Jahren wurden jedoch Verfahren entwickelt, womit die Auflösung deutlich erhöht und zum Teil sogar die Abbesche Beugungsbegrenzung überwunden werden können. Eine Spielart dieser höchstauflösenden Mikroskopie ist die sogenannte 4-Pi-Mikroskopie, die von der Gruppe um Prof. Dr. S. Hell (Max-Planck-Institut für Biophysikalische Chemie in Göttingen) entwickelt worden ist. Kürzlich wurde von Leica Microsystems in Heidelberg ein kommerzielles 4-Pi-Mikroskop mit einer axialen Auflösung von 110 Nanometern auf den Markt gebracht. Diese wird dadurch erzielt, daß die Probe von zwei Objektiven (anstelle des üblichen einen Objektivs) angeregt wird.

Bei der Erforschung der komplexen biomolekularen Netzwerke der lebenden Zelle werden höchstauflösende optische Mikroskopien eine zentrale Rolle spielen. Um den wissenschaftlichen Fortschritt auf diesem Gebiet gezielt zu fördern, wurde im vergangenen Jahr die Großgeräteinitiative »HighLight2004« von der Deutschen Forschungsgemeinschaft (DFG) ausgeschrieben, in deren Rahmen Kompetenzzentren für Fluoreszenzmikroskopie Höchstleistungsmikroskope für grundlagenorientierte Forschungsvorhaben beantragen konnten. Bundesweit wurden insgesamt fünf dieser aufwendigen Apparaturen (Anschaffungspreis etwa 1 Mio. €) genehmigt. Eines davon wird in der Abteilung Biophysik der Universität Ulm aufgebaut. Dieses Mikroskop soll in verschiedenen Forschungsprojekten naturwissenschaftlicher und medizinischer Abteilungen eingesetzt werden. Die Forschungsthemen umfassen unter anderem Untersuchungen zur bakteriellen Zelldifferenzierung, Struktur und Plastizität von Synapsen neuronaler Zellen, Rezeptoraktivierungsprozesse und Signaltransduktionspfade sowie mechanistische Aspekte von Virusinfektionen. Außerdem wird das Mikroskop bei der Entwicklung neuartiger Fluoreszenzsonden (fluoreszente Proteine, Quantenpunkte) eingesetzt. Das neue Instrument stellt eine wichtige Verstärkung der apparativen Infrastruktur in den Lebenswissenschaften an der Universität Ulm dar und erhöht die Attraktivität des Forschungsstandorts Ulm.

Peter Pietschmann | Universität Ulm
Weitere Informationen:
http://www.uni-ulm.de

Weitere Berichte zu: Fluoreszenzmikroskopie Mikroskop Mikroskopie Nanometer Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie