Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich das Herz entwickelt

13.01.2005


Ein Erbfaktor aus einer Meeresqualle in Mäusen mit vier Eltern macht sichtbar, wie sich der Herzmuskel aus Vorläuferzellen entwickelt



Die Arbeitsgruppe Entwicklungsbiologie und Molekulare Pathologie der Universität Bielefeld hat erstmalig die Verteilung der Muskelzellen bei der Entwicklung des Herzens sichtbar gemacht.



Wie andere Gewebe geht der Herzmuskel des Embryos aus so genannten Stammzellen hervor, die durch Teilung Herzmuskelzellen produzieren, die zum Wachstum des Herzens beitragen. Bei der späteren Entwicklung wird das Wachstum des Herzmuskels nicht mehr durch Zellvermehrung, sondern durch Größenzunahme der vorhandenen Muskelzellen bewirkt. Alle Zellen unseres Körpers stammen von einer einzigen Zelle, der befruchteten Eizelle ab - sie bilden einen Klon. Bei der Embryonalentwicklung tritt eine Aufgabenteilung ein: Gruppen von Vorläuferzellen übernehmen die Bildung verschiedener Organe, Gewebe oder Zelltypen. Die Vorläuferzellen teilen sich und werden zu Mutterzellen von Subklonen, also Zellpopulationen, die innerhalb des Körpers wiederum von einer Mutterzelle abstammen. Ein erwachsener Mensch besteht aus etwa zehn Billionen Zellen, die wohlgeordnet die verschiedenen Organe und Gewebe aufbauen, zum Beispiel das Gehirn, die Leber, den Herzmuskel mit zehn Milliarden Muskelzellen. Die Besonderheit des Herzmuskels ist, dass er "Kinderarbeit" leistet, er muss schon während seiner eigenen Entwicklung das Blut durch den Körper des Embryos treiben.

Im Zeitalter der Stammzellforschung interessieren sich Entwicklungsbiologen in Biologie und Medizin für folgende Fragen: Wie viele Vorläuferzellen gründen ein bestimmtes Gewebe? Bleiben die Zellen nach ihrer klonalen Herkunft zusammen oder bewegen und vermischen sie sich (wie das für die Zellen des Gehirns bekannt ist)? Wird das bereits entwickelte Organ durch Zuwanderung von Stammzellen aus dem Blutstrom ergänzt?

Diese Fragen, die für medizinische Aspekte wie Herzmissbildungen und Regeneration von beschädigtem Herzmuskel wichtig sind, haben die Bielefelder Biologen Daniel Eberhard und Harald Jockusch von der Arbeitsgruppe Entwicklungsbiologie und Molekulare Pathologie am biomedizinischen Modellorganismus in Angriff genommen. Um Zellverteilungen zu untersuchen, waren zwei experimentelle Tricks notwendig: Zum einen eine vererbbare Kennzeichnung von Zellen; sie bestand in der Verwendung eines Mausstamms, dem ein Fremdgen für das grün fluoreszierende Eiweiß ("Grün fluoreszierendes Protein", GFP) einer Meeresqualle eingepflanzt war. Diese Mäuse entwickeln, verhalten und vermehren sich normal, viele ihrer Gewebe leuchten aber grün, wenn man sie mit ultraviolettem Licht anstrahlt. Diesen Mausstamm hat der japanische Forscher Okabe zur Verfügung gestellt. Der zweite Trick bestand darin, ganz frühe Entwicklungsstadien zweier Individuen - eines "grünen" und eines "nichtgrünen" zu einem Individuum zu verschmelzen und sich in einer Ammenmutter-Maus entwickeln zu lassen. Das Resultat sind so genannte Chimären, Individuen, die aus zwei befruchteten Eizellen hervorgegangen sind und damit vier Eltern haben. Solche Chimären werden seit vierzig Jahren in der biomedizinischen Forschung verwendet - sie entwickeln sich zur normalen Größe und sind uneingeschränkt lebensfähig. Die Zellmarkierung "grün" versus "nicht-grün" hat nun Entwicklungsvorgänge sichtbar gemacht, die sonst verborgen geblieben wären: Sie hat zur Abschätzung geführt, dass der Herzmuskel aus 100 bis 200 Vorläuferzellen entsteht, also aus dieser Anzahl von Herzmuskel-Klonen gebildet wird. Weiterhin fanden Daniel Eberhard und Harald Jockusch, dass die klonal verwandten Herzmuskelzellen sich bei der Herzentwicklung nicht so durchmischen wie zum Beispiel die Zellen des Gehirns, sondern gemäß ihrer Zellabstammung zusammen bleiben. Wie die Bielefelder Wissenschaftler festgestellt haben, "erzeugt die Vergrößerung der Klone durch Zellvermehrung dabei wirbelförmige Muster, die den Kraftlinien des arbeitenden Herzens folgen. Allerdings gibt es Durchmischung in den Randzonen der Klone, entweder dadurch, dass sich der ständig arbeitende Herzmuskel selbst durchknetet und dadurch Zellen aus ihrem ursprünglichen klonalen Verband heraus quetscht oder durch die aktive Wanderschaft einzelner Herzmuskelzellen. Manche Einzelzellen entfernen sich tatsächlich beträchtlich von ihren Schwestern und leben dann in der ’Diaspora’, umgeben von Zellen unverwandten Ursprungs."

Die Bielefelder Forscher erinnern daran, dass vor etwas über zwei Jahren eine aufregende Nachricht durch Wissenschaftskreise und Presse ging: Eine amerikanische Arbeitsgruppe hatte einen verstorbenen Herzpatienten untersucht, dem man einige Jahre vor seinem Tod das Herz einer Frau eingepflanzt hatte. Dieser Patient war also - biologisch gesehen - eine Chimäre, sogar eine Geschlechts-Chimäre, was allerdings für die Funktion des Herzens ohne Belang ist. Wichtig war dies jedoch für die posthume Untersuchung: Die Zellen des Patienten waren nämlich "markiert": sie enthielten im Zellkern das nur beim Mann vorkommende Y-Chromosom; dieses fehlte aber im eingepflanzten weiblichen Herz. Mit einer etwas umständlichen Methode, der DNA-in-situ-Hybridisierung, ließ sich in Gewebeschnitten für jede einzelne Zelle nachweisen, ob sie ein Y-Chromosom enthält oder nicht. Auf diese Weise wurden im transplantierten Frauenherz männliche Herzmuskelzellen gefunden. Es sah so aus als seien herzmuskelbildende Stammzellen aus dem Blut des Empfängers in das Spenderherz eingewandert - ein sensationeller Befund. Die Aufregung war verständlich, denn weltweit versuchen Forschergruppen, geschädigte Herzen von Versuchstieren durch Injektion von Stammzellen (natürlich wieder nach GFP-Markierung!) zu reparieren. In den folgenden Monaten wurde allerdings im Falle des chimärischen Patienten von anderen Arbeitsgruppen angezweifelt, dass die männlichen Einwanderer im weiblichen Herz wirklich arbeitsfähige Herzmuskelzellen seien - vielleicht waren es nur Glattmuskelzellen von Blutgefäßen, die vom Empfänger in das transplantierte Herz eingesprosst waren. Aber die Frage ist geblieben: Gibt es so etwas wie einen mobilen Reparaturservice für den Herzmuskel in Form von Stammzellen, die durch den Blutstrom in das Herz getragen werden, sich dort festsetzen und sich in kontrahierende Herzmuskelzellen umwandeln? Auch hier haben die Bielefelder Maus-Chimären eine Antwort gegeben: Im gesunden Herzen der Maus gibt es solche Einwanderer offenbar nicht. In großen, von GFP-freien Klonen abstammenden Herzmuskelbereichen hätte man sonst versprengte, möglicherweise um die Blutgefäße angereicherte, einzelne grün fluoreszierende Muskelzellen finden müssen. Dem Nachweis im Fluoreszenzmikroskop entgehen nämlich auch einzelne Muskelzellen nicht, obwohl sie nur ein Hundertstel Millimeter groß sind. Vereinzelte grüne Zellen wurden aber nur in der Nachbarschaft größerer grüner Zellgruppen gefunden, aus denen sie offenbar ausgewandert sind.

Die Bielefelder Forschungsergebnisse wurden im Rahmen der Doktorarbeit von Daniel Eberhard mit Förderung durch die Deutsche Forschungsgemeinschaft (Graduiertenkolleg "Strukturbildungsprozesse") und des Fonds der chemischen Industrie erhoben. Sie sind in der Zeitschrift "Developmental Biology" ("Entwicklungsbiologie") online veröffentlicht (www.sciencedirect.com).

Auskünfte und Bildmaterial: Prof. Harald Jockusch, h.jockusch@uni-bielefeld.de, Telefon 07664/408004, und Dr. Daniel Eberhard, daniel.eberhard@uni-bielefeld.de, Telefon 0521/106 5799.

Pressemitteilung Nr. 17/2005
Universität Bielefeld
Informations- und Pressestelle
Dr. Gerhard Trott
Telefon: 0521/106-4145/4146
Fax: 0521/106-2964
E-Mail: gerhard.trott@uni-bielefeld.de

Dr. Gerhard Trott | idw
Weitere Informationen:
http://www.uni-bielefeld.de

Weitere Berichte zu: Gewebe Herzmuskel Herzmuskelzelle Klon Muskelzellen Stammzelle Vorläuferzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Quantenkommunikation: Wie man das Rauschen überlistet

29.03.2017 | Physik Astronomie

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE