Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Thomas Brand erforscht die Entwicklung des Herzens

12.01.2005


Das Herz ist das erste Organ, das sich in den Embryonen von Wirbeltieren bildet. Schon kurze Zeit nach der Befruchtung entsteht eine Herzröhre, die sich bei Vögeln und Säugetieren zu der aus vier Kammern bestehenden Blutpumpe weiterentwickelt. Mit diesem komplexen Prozess befasst sich die Arbeitsgruppe von Thomas Brand, der seit Dezember als C3-Professor für Molekulare Entwicklungsbiologie an der Uni Würzburg tätig ist.



Am Lehrstuhl für Zell- und Entwicklungsbiologie im Biozentrum wollen die Forscher Gene identifizieren, die an der Herzentwicklung beteiligt sind. Sie suchen nach Signalmolekülen, die embryonale Vorläuferzellen zu Herzmuskelgewebe werden lassen. Diese Untersuchungen wurden zunächst an Hühnerembryonen durchgeführt und sollen nun an embryonalen Stammzellen von Mäusen fortgesetzt werden. Das Ziel der Wissenschaftler: Sie wollen effiziente Kulturbedingungen schaffen, unter denen sie aus den undifferenzierten Vorläufern gezielt Herzmuskelzellen erzeugen können.



Eine zweite Klasse von Molekülen, für die sich Brand und seine Mitarbeiter interessieren, ist an der Entscheidung beteiligt, ob das Herz auf der rechten oder linken Körperhälfte lokalisiert ist. Sie untersuchen hierzu die Funktion des Moleküls CFC, das anderen Signalmolekülen hilft, an ihre Rezeptoren zu binden.

Ein weiterer Schwerpunkt liegt auf der molekularen Analyse der Prozesse, die bei der Entstehung der Herzkranzgefäße ablaufen. Ausgangspunkt hierfür ist ein kleiner Zellhaufen, dessen Zellen zunächst auf die Oberfläche des Herzens wandern. "Dort werden sie dann durch eine intensive Zellkommunikation dazu gebracht, die Herzkranzgefäße auszubilden", wie Brand erklärt.

Schließlich beschäftigt sich die Arbeitsgruppe des neuen Professors mit der Charakterisierung einer neuartigen Familie von Membranproteinen, die bevorzugt im Herzmuskel auftauchen. In Kollaboration mit physiologisch ausgerichteten Forschungsteams im In- und Ausland untersuchen die Würzburger die Funktion dieser Genfamilie bei der Entstehung von Herzkrankheiten.

Thomas Brand, 1960 in Hamm in Westfalen geboren, studierte Biologie in Bielefeld. Zur Erlangung des Doktorgrades arbeitete er am Max-Planck-Institut für physiologische und klinische Forschung in Bad Nauheim. Es folgte, gefördert von der Deutschen Forschungsgemeinschaft, ein dreijähriger Aufenthalt als Postdoktorand am Baylor College of Medicine in Houston (USA). Von 1994 bis 2004 war Brand dann an der Technischen Universität Braunschweig tätig.

Kontakt: Prof. Dr. Thomas Brand, T (0931) 888-4250, Fax (0931) 888-4252, E-Mail:
thomas.brand@biozentrum.uni-wuerzburg.de

| idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie