Den Selbstheilungskräften ein Stück näher

Mittels Dichtezentrifugation kann man das Zytoplasma embryonaler Stammzellen von deren Zellkernen trennen. Wissenschaftler des Max-Planck-Instituts für molekulare Biomedizin haben jetzt beide Fraktionen getrennt für Experimente zur Reprogrammierung von Mausnervenzellen eingesetzt. Hierbei führte nur die Fusion von Kernen embryonaler Stammzellen (ES-Kerne) mit Nervenzellen (NSC) zu einer Aktivierung des grün-fluoreszierend markierten Pluripotenz-Gens Oct4 (A, B). Hingegen führte die Fusion von Zytoplasma mit den Nervenzellen nicht zur Reprogrammierung und somit auch nicht zur Aktivierung der Fluoreszenz (C, D). Bild: Max-Planck-Institut für molekulare Biomedizin

Forscher des Max-Planck-Instituts für molekulare Biomedizin zeigen, dass Körperzellen durch den Zellkern embryonaler Stammzellen reprogrammiert werden

Ausgereifte Körperzellen haben im Organismus nur noch eine stark eingeschränkte Wandlungsfähigkeit. Diese Festlegung „somatischer“ Zellen kann jedoch durch Fusion mit anderen Zellen auf die Fähigkeit der Pluripotenz zurück programmiert werden. Mittels Kerntransfers kann bekanntlich sogar Totipotenz erreicht werden, obwohl die ursprüngliche somatische Zelle ausdifferenziert war. Wissenschaftler des Max-Planck-Instituts für molekulare Biomedizin in Münster haben daher untersucht, wo die für die „Reprogrammierung“ verantwortlichen Faktoren in einer embryonalen Stammzelle lokalisiert sind. Dabei stellten sie fest, dass diese Faktoren nicht im Zytoplasma dieser Zellen, sondern in deren Zellkern, oder zumindest daran anhaftend, zu finden sind (Stem Cells, November 2004). Die Reprogrammierung der embryonalen Gene ist also unabhängig von DNS-Replikation und Zellteilung.

Eine der größten Herausforderungen für die moderne Stammzell-Forschung ist die Suche nach neuen und genetisch maßgeschneiderten Stammzell-Linien, die man ohne einen Embryo erzeugen kann. Am besten dafür geeignet erscheint der Weg über die Reprogrammierung normaler Körperzellen in pluripotente Stammzellen – unter Verzicht auf Eizellen und Embryos. Doch dazu müssen die Wissenschaftler erst herausfinden, was im einzelnen bei der Reprogrammierung durch Kerntransfer passiert. Welche in einer Zelle enthaltenen Faktoren steuern also einen bereits differenzierten Zellkern zurück in einen Kern, der wieder in der Lage ist, die Entwicklung eines kompletten Organismus zu steuern?

Wissenschaftler um Prof. Hans Schöler haben jetzt am Max-Planck-Institut für molekulare Biomedizin in Münster gezeigt, dass das Zytoplasma von embryonalen Stammzellen diese magischen Faktoren möglicherweise gar nicht enthält. Vielmehr scheint der Schlüssel im Kern der Stammzellen zu liegen.

Um zu klären, welcher Art die für die „Reprogrammierung“ verantwortlichen Faktoren sind, untersuchten die Wissenschaftler die Wirkung unterschiedlicher Bestandteile embryonaler Stammzellen. Als somatischer Fusionspartner dienten Nervenzellen („Neurospheres“) der Maus, die dann entweder mit intakten embryonalen Stammzellen, nur mit deren Zytoplasma oder nur mit deren Kernen fusioniert wurden. Als Nachweis für das „Anschalten“ der Pluripotenz der Zellen wirkte der grün-fluoreszierend markierte Transkriptionsfaktor Oct4.

Die Experimente zeigten, dass die Fusion der somatischen Zellen mit intakten embryonalen Stammzellen erwartungsgemäß pluripotente Zellen hervorbringt. Fusioniert man die Nervenzellen nur mit den Kernen embryonaler Stammzellen, findet sich erstaunlicherweise das gleiche Bild: Diese Nervenzellen schalteten ihre eigenen embryonalen Gene an und bildeten Stammzell-ähnliche Kolonien. Setzt man hingegen nur das Zytoplasma der embryonalen Stammzellen ein, werden die somatischen Zellen nicht auf ein pluripotentes Stadium zurückgestellt.

Die für die „Reprogrammierung“ von Körperzellen notwendigen Faktoren liegen also nicht im Zytoplasma, sondern in den Zellkernen embryonaler Stammzellen, oder sind zumindest daran anhaftend zu finden.

Originalveröffentlichung:

Jeong Tae Do, Hans R. Schöler
Nuclei of Embryonic Stem Cells Reprogram Somatic Cells
Stem Cells, Nov 2004; 22: 941 – 949

Weitere Informationen:

Prof. Hans R. Schöler
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel.: 0251 980-2866
Fax: 0251 980-2992 bzw. -2802
E-Mail: schoeler@mpi-muenster.mpg.de

Media Contact

Dr. Bernd Wirsing Max-Planck-Update

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer