Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Selbstheilungskräften ein Stück näher

12.01.2005


Mittels Dichtezentrifugation kann man das Zytoplasma embryonaler Stammzellen von deren Zellkernen trennen. Wissenschaftler des Max-Planck-Instituts für molekulare Biomedizin haben jetzt beide Fraktionen getrennt für Experimente zur Reprogrammierung von Mausnervenzellen eingesetzt. Hierbei führte nur die Fusion von Kernen embryonaler Stammzellen (ES-Kerne) mit Nervenzellen (NSC) zu einer Aktivierung des grün-fluoreszierend markierten Pluripotenz-Gens Oct4 (A, B). Hingegen führte die Fusion von Zytoplasma mit den Nervenzellen nicht zur Reprogrammierung und somit auch nicht zur Aktivierung der Fluoreszenz (C, D). Bild: Max-Planck-Institut für molekulare Biomedizin


Forscher des Max-Planck-Instituts für molekulare Biomedizin zeigen, dass Körperzellen durch den Zellkern embryonaler Stammzellen reprogrammiert werden


Ausgereifte Körperzellen haben im Organismus nur noch eine stark eingeschränkte Wandlungsfähigkeit. Diese Festlegung "somatischer" Zellen kann jedoch durch Fusion mit anderen Zellen auf die Fähigkeit der Pluripotenz zurück programmiert werden. Mittels Kerntransfers kann bekanntlich sogar Totipotenz erreicht werden, obwohl die ursprüngliche somatische Zelle ausdifferenziert war. Wissenschaftler des Max-Planck-Instituts für molekulare Biomedizin in Münster haben daher untersucht, wo die für die "Reprogrammierung" verantwortlichen Faktoren in einer embryonalen Stammzelle lokalisiert sind. Dabei stellten sie fest, dass diese Faktoren nicht im Zytoplasma dieser Zellen, sondern in deren Zellkern, oder zumindest daran anhaftend, zu finden sind (Stem Cells, November 2004). Die Reprogrammierung der embryonalen Gene ist also unabhängig von DNS-Replikation und Zellteilung.

Eine der größten Herausforderungen für die moderne Stammzell-Forschung ist die Suche nach neuen und genetisch maßgeschneiderten Stammzell-Linien, die man ohne einen Embryo erzeugen kann. Am besten dafür geeignet erscheint der Weg über die Reprogrammierung normaler Körperzellen in pluripotente Stammzellen - unter Verzicht auf Eizellen und Embryos. Doch dazu müssen die Wissenschaftler erst herausfinden, was im einzelnen bei der Reprogrammierung durch Kerntransfer passiert. Welche in einer Zelle enthaltenen Faktoren steuern also einen bereits differenzierten Zellkern zurück in einen Kern, der wieder in der Lage ist, die Entwicklung eines kompletten Organismus zu steuern?


Wissenschaftler um Prof. Hans Schöler haben jetzt am Max-Planck-Institut für molekulare Biomedizin in Münster gezeigt, dass das Zytoplasma von embryonalen Stammzellen diese magischen Faktoren möglicherweise gar nicht enthält. Vielmehr scheint der Schlüssel im Kern der Stammzellen zu liegen.

Um zu klären, welcher Art die für die "Reprogrammierung" verantwortlichen Faktoren sind, untersuchten die Wissenschaftler die Wirkung unterschiedlicher Bestandteile embryonaler Stammzellen. Als somatischer Fusionspartner dienten Nervenzellen ("Neurospheres") der Maus, die dann entweder mit intakten embryonalen Stammzellen, nur mit deren Zytoplasma oder nur mit deren Kernen fusioniert wurden. Als Nachweis für das "Anschalten" der Pluripotenz der Zellen wirkte der grün-fluoreszierend markierte Transkriptionsfaktor Oct4.

Die Experimente zeigten, dass die Fusion der somatischen Zellen mit intakten embryonalen Stammzellen erwartungsgemäß pluripotente Zellen hervorbringt. Fusioniert man die Nervenzellen nur mit den Kernen embryonaler Stammzellen, findet sich erstaunlicherweise das gleiche Bild: Diese Nervenzellen schalteten ihre eigenen embryonalen Gene an und bildeten Stammzell-ähnliche Kolonien. Setzt man hingegen nur das Zytoplasma der embryonalen Stammzellen ein, werden die somatischen Zellen nicht auf ein pluripotentes Stadium zurückgestellt.

Die für die "Reprogrammierung" von Körperzellen notwendigen Faktoren liegen also nicht im Zytoplasma, sondern in den Zellkernen embryonaler Stammzellen, oder sind zumindest daran anhaftend zu finden.

Originalveröffentlichung:

Jeong Tae Do, Hans R. Schöler
Nuclei of Embryonic Stem Cells Reprogram Somatic Cells
Stem Cells, Nov 2004; 22: 941 - 949

Weitere Informationen:

Prof. Hans R. Schöler
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel.: 0251 980-2866
Fax: 0251 980-2992 bzw. -2802
E-Mail: schoeler@mpi-muenster.mpg.de

Dr. Bernd Wirsing | Max-Planck-Update
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Körperzelle Stammzelle Zellkern Zytoplasma

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics