Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pionierprojekt Tiefseeboden: Leben in der tiefen Biosphäre

11.01.2005


Das Forschungsschiff "Joides Resolution" gehört seit mehr als 20 Jahren zum Internationalen Tiefseebohrprogramm (Ocean Drilling Project (ODP)/ Integrated Ocean Drilling Project (IODP, www.iodp.org)/ und ist für geologische Untersuchungen und Bohrungen besonders ausgerüstet. Im Rahmen der Expedition 201 gingen die Bohrer bei Wassertiefen von 100 bis 5000 m bis zu 420 m in den Meeresboden bis zur Basaltkruste. " Der strukturelle Aufbau ist fast so wie es aus dem Wattboden bekannt ist, nur sind die Zonen hundertfach ausgedehnter und die Prozesse laufen tausend Mal langsamer ab", meint Prof. Dr. Jørgensen.(Copyright ODP Program , www.iodp.org).


Deutsche Wissenschaftler am internationalen Bohrprogramm maßgeblich beteiligt

... mehr zu:
»Biosphäre »Resolution »Schicht

Im angesehenen Fachblatt Science berichtet jetzt eine internationale Gruppe von Wissenschaftlern über ihre Ergebnisse von einer mikrobiologischen Expedition im Rahmen des internationalen Ocean Drilling Programs (ODP) zu den Küsten Perus im Frühjahr 2002 mit dem Forschungsbohrschiff "Joides Resolution". Nach genauer Analyse legen sie jetzt ihre überraschenden Befunde vor. Tief im Meeresboden entdeckten sie zahlreiche bisher unbekannte Bakterienarten und konnten die von ihnen gesteuerten Prozesse studieren.

Das Licht der Sonne ist die Quelle allen Lebens auf der Erde. Licht ermöglicht es den Pflanzen, mit Hilfe der Photosynthese Energie zu speichern, die die Grundlage für alle höheren Lebensformen darstellt. Die Grenzen des Lebens auszuloten ist für Wissenschaftler von besonderem Interesse. Fündig wurden sie an vielen Stellen. Ob in heißen Quellen oder in der Kälte der arktischen Gewässer, die Natur schafft es immer wieder, auch diese extremen Standorte mit Leben zu besiedeln. Es gab bisher nur Schätzungen, wie weit es die Lebewesen in die Tiefen des Meeresbodens geschafft haben.

Dort wo kein Licht ist, müssen andere Quellen in Form von chemischen Verbindungen als Energiequelle dienen. Aus früheren Expeditionen mit der "Joides Resolution" hatte man Hinweise, dass es in den Tiefen der Erde Spuren von Leben gibt. Unbekannt war aber, welchen Anteil daran Organismen mit einem aktiven Stoffwechsel stellen oder ob es sich bei den Spuren hauptsächlich nur um fossile Überreste längst abgestorbener Mikroben bzw. um stabile Dauerformen (Sporen) handelt. Um genau diese Frage zu lösen, ging im Frühjahr 2002 eine internationale Gruppe von Geochemikern und Biologen (davon viele Deutsche) im Hafen von San Diego, Kalifornien, an Bord der "Joides Resolution". Ziel war der Kontinentalhang vor Peru und der östliche Teil des Pazifiks um die Galapagos Inseln. Auf dem Fahrtabschnitt 201 teilten sich die beiden Fahrtleiter Prof. Dr. Bo Barker Jørgensen aus dem Bremer Max-Planck-Institut für marine Mikrobiologie und Prof. Dr. Steven D´Hondt von der University of Rhode Island, USA, die Verantwortung für dieses Pionierprojekt.

Mit dem Spezialbohrgestänge der "Joides Resolution" bohrten die Forscher Löcher in den Meeresboden und untersuchten dann den Inhalt Schicht für Schicht. Was auf den ersten Blick einer Standard-Bohrtechnik gleichkommt, steckt voller Tücken. Um bei den Proben sicher zu sein, dass keine Bakterien von oberen Schichten oder aus dem Meerwasser bei der Bohrung unbemerkt in die Proben kommen, haben die Forscher ein doppelt abgesichertes Analyseverfahren entwickelt. Mit einer Kombination von zwei leicht nachzuweisenden Indikatorstoffen konnten sie dieses Problem in den Griff kriegen. Nur Bohrkerne, bei denen beide Indikatorsubstanzen nicht nachweisbar waren, kamen in die Wertung.

Jetzt liegen die ersten Auswertungen vor

In allen Bohrkernen aus bis zu 420 Meter Tiefe, also in bis zu 35 Millionen Jahre alten Ablagerungen, fanden die Forscher Spuren von Leben. Unter dem Mikroskop konnten sie in allen Schichten intakte Zellen zählen. Je nach Tiefe fanden sie deutliche Veränderungen in den Konzentrationen einer Reihe von chemischen Verbindungen und Elementen. Mit diesen Tiefenprofilen konnten die Forscher genau berechnen, welche Prozesse dort ablaufen. Man vermutete zunächst, dass eine bisher unbekannte versteckte Nahrungsquelle wie Wasserstoff genug Energie für die Lebensprozesse zur Verfügung stellt. Jetzt stellt sich heraus, dass dies nicht der Fall ist und dass ausreichend Nahrung in Form von Kohlenstoffverbindungen vorhanden ist, auch in den 35 Millionen Jahre alten Schichten. Dieses organische Material stammt von vor Urzeiten abgestorbenen Lebewesen und ist der schwer verdauliche Rest, den Mikroorganismen nicht zersetzen konnten. Weil diese Stoffe so schwer verdaulich sind, müssen die Lebensprozesse in dieser tiefen Biosphäre extrem langsam ablaufen. In der Arbeitsgruppe Paläomikrobiologie des Oldenburger Instituts für Chemie und Biologie des Meeres gelang es, aus den Proben mehr als 170 Reinkulturen zu isolieren. Sie fanden mindestens 14 verschiedene Arten, darunter mehrere bisher unbekannte. Damit war der Beweis erbracht, dass es sich bei den Zellen um aktive Lebensformen handelt.

Für Prof. Dr. Bo Barker Jørgensen, den deutschen Leiter des Projekts, stellen sich jetzt neue Fragen. Wie hängt diese tiefe Biosphäre mit ihren extrem langsamen Prozessen mit der oberen Biosphäre zusammen? Wie ist der Lebensraum strukturiert? "Die Antwort auf diese Fragen kann uns helfen zu verstehen, wie das Leben auf der Erde entstanden ist und wie ähnliche Prozesse auf anderen Welten ablaufen könnten", fasst Jørgensen zusammen. Unterstützung für die deutsche Beteiligung an diesem ehrgeizigen Projekt kommt von der Deutschen Forschungsgemeinschaft (DFG) und dem Bundesministerium für Bildung und Forschung (BMBF).

Titel der Originalarbeit:

Distributions of microbial activities in deep subseafloor sediments
Steven D’Hondt, Bo Barker Jørgensen, D. Jay Miller, et al.
Science, Bd. 306, 24.12.2004

Ansprechpartner

Prof. Dr. Bo Barker Jørgensen (MPI), 0421-2028602, bjoergen@mpi-bremen.de
Prof. Dr. Heribert Cypionka, (ICBM), 0441-798 5360, h.cypionka@icbm.de
Dr. Timothy Ferdelman (MPI), 0421-2028-651, tferdelm@mpi-bremen.de
Prof. Dr. Kai-Uwe Hinrichs, (Uni Bremen), 0421-218-8640, khinrichs@uni-bremen.de
Dr. Axel Schippers (BGR), 0511-643-3103, a.schippers@bgr.de

Beteiligte Institutionen:

BGR: Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hannover,
ICBM : Institut für Chemie und Biologie des Meeres (ICBM), Universität Oldenburg D-26111 Oldenburg
MPI: Max-Planck-Institut für marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, 0421-2028-50,
RCOM: DFG-Forschungszentrum Ozeanränder, Fachbereich Geowissenschaften, Universität Bremen

Manfred Schlösser | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.bgr.de
http://www.icbm.de/pmbio
http://www.mpi-bremen.de

Weitere Berichte zu: Biosphäre Resolution Schicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops