Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HU-Forscher entschlüsseln Hörprozesse mit bisher unerreichter zeitlicher Präzision

05.01.2005


Wer gut hören will, muss schnelle Ohren haben. Nur Bruchteile einer Sekunde stehen zur Verfügung, um aus einem Schallsignal die entscheidenden Informationen zu gewinnen, damit die Bedeutung eines Wortes erkannt oder die Richtung eines Geräusches bestimmt werden kann. Zwei Forscher, Dr. Tim Gollisch und Prof. Dr. Andreas Herz von der Humboldt-Universität zu Berlin, haben nun ein neuartiges Verfahren entwickelt, mit dem sich die einzelnen Vorgänge, die dabei im Ohr stattfinden, gleichzeitig und ohne Verletzung des Ohres beobachten lassen.



Am Beispiel des Heuschreckenohres konnten sie zeigen, dass die Umwandlung von Schall in Nervensignale durch eine Kette von vier fundamentalen Schritten vermittelt wird, die jeweils nicht länger als eine Tausendstel Sekunde dauern. Die einzelnen Schritte konnten dabei mit einer zeitlichen Präzision im Bereich von Millionstel Sekunden bestimmt werden. Die Forscher erwarten, dass das Verfahren auch bei vielen anderen biologischen Systemen zum Entschlüsseln schneller Signalketten beitragen wird.

... mehr zu:
»Nervenzelle »Ohr


In einer Arbeit, die demnächst in der "Public Library of Science" im Druck erscheint, zeigen die beiden Wissenschaftler, dass es möglich ist, feinste Details der Schallverarbeitung im Ohr aufzudecken, indem man untersucht, wie Hörsinneszellen auf kurze "Klick-Geräusche" reagieren. Dazu spielten sie einer Heuschrecke unterschiedliche Kombinationen solcher Klicks vor und maßen gleichzeitig die elektrische Aktivität in den Hörsinneszellen. War das Geräusch stark genug, so signalisierte die Nervenzelle dies durch eine elektrische Entladung, ansonsten blieb sie inaktiv.

Der entscheidende "Trick" bei den Experimenten bestand nun darin, solche Kombinationen von Klicks zu suchen, auf die eine Nervenzelle mit gleicher Stärke antwortete. Standen die Klicks beispielsweise im richtigen zeitlichen Abstand zueinander, konnten sie sehr leise vorgespielt werden, war ihr Abstand ungünstig, musste ihre Lautstärke erhöht werden. Durch ihre Vorliebe für bestimmte Kombinationen von Klicks verrieten die Nervenzellen, welchen Zeitverlauf die Prozesse im Ohr haben, die zur elektrischen Entladung führen. Mit Hilfe eines mathematischen Modells zeigte sich dann, dass das durch einen Klick angeregte Trommelfell nur zwei- bis dreimal schwingt, bevor es wieder zur Ruhe kommt. Dies geschieht schon nach weniger als einer Tausendstel Sekunde. Ähnlich schnell entsorgt die Nervenzelle alte Signale, indem sie elektrisch geladene Teilchen mit hoher Geschwindigkeit aus ihrem Inneren herauslässt. Sie verdrängt damit quasi "Erinnerungen" an frühere Geräusche. Dieses kurze Gedächtnis führt dazu, dass die Sinneszelle immer wieder unvoreingenommen auf neue Ereignisse reagieren und so besonders viel Information über ein Schallsignal weitergeben kann. Mit dem neuen Verfahren kann der exakte Zeitverlauf der einzelnen Schritte nun erstmals mit einer Genauigkeit gemessen werden, die nur durch die Präzision begrenzt wird, mit der das Schallsignal dargeboten wird. In den Untersuchungen von Gollisch und Herz konnte damit die zeitliche Auflösung gegenüber bisher verwendeten Methoden um mehr als das Hundertfache verbessert werden, mit Hochpräzisions-Lautsprechern wären noch weitere Steigerungen möglich.

Signalketten findet man nicht nur im Ohr und anderen Sinnesorganen, sondern auch in vielen weiteren biologischen Systemen, zum Beispiel beim Ablesen des genetischen Codes oder der Regulation von zellulären Prozessen. Die Forscher gehen daher davon aus, dass sich mit der neu entwickelten Methode auch dort bisher verdeckte Verarbeitungsschritte entschlüsseln und mit hoher Genauigkeit messen lassen. Die "Public Library of Science", in der die Studie am 4.1.05 in einer vorgezogenen Online-Ausgabe erschienen ist - siehe www.plosbiology.org -, ist ein neuartiges Wissenschaftsjournal, das die freie Zugänglichkeit (über das Internet) und Weiterverwertung der Forschungsergebnisse erlaubt. Damit unterscheidet sich dieses Journal, das seit seinem Start im Oktober 2003 rasch weltweite Anerkennung gefunden hat, von den meisten älteren, etablierten wissenschaftlichen Zeitschriften, deren Verfügbarkeit bei den Universitätsbibliotheken hohe Kosten verursachen.

Informationen

Prof. Dr. Andreas Herz, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Theorie neuronaler Systeme, und Bernstein Center for Computational Neuroscience Berlin

Dr. Tim Gollisch, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA

Telefon Prof. Dr. Herz: [030] 2093-9103; Dr. Gollisch: 001-617-496-8302
e-mail a.herz@biologie.hu-berlin.de und t.gollisch@biologie.hu-berlin.de

Heike Zappe | idw
Weitere Informationen:
http://biology.plosjournals.org/
http://www.bccn-berlin.de
http://www.plosbiology.org

Weitere Berichte zu: Nervenzelle Ohr

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten