Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution im Zeitraffer: Neue Einblicke ins Maisgenom

22.12.2004


Seit Mais vor etwa fünf Millionen Jahren aus der Kreuzung zweier eng verwandter Vorfahren entstand, ist sein Erbgut ständig im Wandel: manche Gene verschwinden, andere werden variiert und vervielfältigt, wieder andere wechseln häufig ihren Platz. Schon nach einer evolutionär gesehen kurzen Zeitspanne unterscheidet sich Mais auch von nahen Verwandten stark - vermutlich gibt es zwischen ihnen mehr genetische Unterschiede, als zwischen Mensch und Maus.



Eine deutsch-amerikanische Forschergruppe hat nun einen wesentlichen Meilenstein auf dem Weg zur Entschlüsselung dieser komplexen Genomstruktur erreicht: Erstmalig kennen die Wissenschaftler die Anzahl und die räumliche Anordnung der Mais-Gene. Mit diesen Informationen wurde eine wesentliche Grundlage für die Sequenzierung des gesamten Genoms erarbeitet. "Bereits jetzt liefern diese Ergebnisse wichtige Informationen nicht nur für die zukünftige Genomforschung, sondern auch für weitere Fortschritte in der Pflanzenzüchtung", berichtet Dr. Klaus Mayer (GSF- MIPS, Institut für Bioinformatik), dessen Team die einzigen nicht-amerikanischen Teilnehmer an dem Projekt stellt.

... mehr zu:
»Erbgut »Genom »Klone »Kreuzung »Mais »Maisgenom »Züchtung


Das Maisgenom ist ungefähr so groß wie das des Menschen und stellt damit das größte bisher untersuchte pflanzliche Genom dar. Seit die Pflanze vor fünf Millionen Jahren entstand, hat sich ihr Erbgut extrem gewandelt: Ursprünglich war Mais tetraploid, d.h. er besaß vier Chromosomensätze, da beide Ursprungspflanzen ihren kompletten Chromosomensatz in die Kreuzung einbrachten. Anschließend gingen allerdings sehr viele Gene wieder verloren, während andere verdoppelt und immer wieder variiert wurden. "Insgesamt umfasst das Maisgenom etwa 59 000 Gene, das sind ungefähr doppelt so viele wie im menschlichen Genom, das von der Größe her vergleichbar ist" erklärt Mayer. Die Struktur des Maisgenoms ist sehr komplex, da viele verschachtelte repetitive Elemente zwischen die Gene gestreut sind. Um das Ganze noch komplizierter zu machen, verändern zahlreiche Gene immer wieder ihre Position im Genom: Als springende Gene (Transposons) können sie sowohl innerhalb des Chromosoms an eine andere Stelle wechseln, als auch auf andere Chromosomen springen.

"Für die Analyse des Maisgenoms haben wir unsere genetischen Standardmethoden zum ersten Mal an einem wirklich großen Datensatz angewandt", verdeutlicht Mayer, "mit diesen im Hochdurchsatz-Verfahren relativ schnell und kostengünstig erworbenen Daten konnten wir die Genomstruktur so weit analysieren, dass wir wissen, wie viele Gene und repetitve Elemente vorhanden sind und auch, in welcher Reihenfolge die Gene aufeinander folgen."

Im Einzelnen erzeugten die Wissenschaftler 250.000 Klone, die Abschnitte des Erbguts enthalten. Die Wissenschaftler sequenzierten dann die "Rand-Sequenzen" der Klone und erhielten damit Informationen über 500.000 Sequenzen - Mayer schätzt, dass allein mit diesen Daten etwa 70 Prozent aller Gene markiert sein müssten.

In die richtige Reihenfolge gebracht wurden die Klone mit Hilfe sogenannter Fingerprinting Contigs: Dabei schneiden Enzyme die DNA an ganz bestimmten Stellen. Die Bruchstücke werden anschließend auf einem Gel in Banden aufgetrennt. Überlappen sich Banden verschiedener Klone, weiß man: hier überlappen die einzelnen Klone. Auf diese Weise werden Klone in Gruppen - die Fingerprinting Contigs - zusammengefasst, bis nur noch wenige "Löcher" übrig bleiben, für die es keine Überlappungen gibt. "Wir haben es geschafft, die 250.000 Klone auf weniger als 800 Gruppen zusammenzuschmelzen", berichtet Mayer stolz, "möglichst wenige Gruppen zu erhalten ist wichtig, da das Auffüllen der Löcher zwischen den Contigs zeit- und geldintensiv ist".

Mais gehört weltweit zu den wichtigsten Getreidepflanzen. Die bisher erreichten Ergebnisse bringen nicht nur die Wissenschaft einen großen Schritt voran, sondern sie eröffnen auch für die Praxis neue Möglichkeiten, z.B. für die Züchtung neuer leistungsfähiger Sorten. Dabei ist nicht die Erzeugung transgener Pflanzen das Ziel, sondern die konventionelle züchterische Verbesserung. Das Ziel neuer Züchtungen ist das Einkreuzen agronomisch wichtiger Merkmale wie Stress-Toleranz oder höherer Ertrag, um bestehende Maislinien zu verbessern. "Für die Züchtung ist es wichtig, diese Merkmale mit molekularen Sequenzen zu verknüpfen, d.h. wir müssen genetische Marker finden, um die für uns interessanten Bereiche möglichst eng eingrenzen", erläutert Mayer. Bereits mit den bisher vorliegenden Daten können viele Marker entwickelt werden, mit deren Hilfe nach einer konventionellen Kreuzung relativ leicht geprüft werden kann, ob das Ergebnis die gewünschten Eigenschaften trägt. Das nächste Ziel der Wissenschaftler ist nun die vollständige Sequenzierung des Maisgenoms, die in etwa drei bis fünf Jahren abgeschlossen sein könnte.

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Erbgut Genom Klone Kreuzung Mais Maisgenom Züchtung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen