Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution im Zeitraffer: Neue Einblicke ins Maisgenom

22.12.2004


Seit Mais vor etwa fünf Millionen Jahren aus der Kreuzung zweier eng verwandter Vorfahren entstand, ist sein Erbgut ständig im Wandel: manche Gene verschwinden, andere werden variiert und vervielfältigt, wieder andere wechseln häufig ihren Platz. Schon nach einer evolutionär gesehen kurzen Zeitspanne unterscheidet sich Mais auch von nahen Verwandten stark - vermutlich gibt es zwischen ihnen mehr genetische Unterschiede, als zwischen Mensch und Maus.



Eine deutsch-amerikanische Forschergruppe hat nun einen wesentlichen Meilenstein auf dem Weg zur Entschlüsselung dieser komplexen Genomstruktur erreicht: Erstmalig kennen die Wissenschaftler die Anzahl und die räumliche Anordnung der Mais-Gene. Mit diesen Informationen wurde eine wesentliche Grundlage für die Sequenzierung des gesamten Genoms erarbeitet. "Bereits jetzt liefern diese Ergebnisse wichtige Informationen nicht nur für die zukünftige Genomforschung, sondern auch für weitere Fortschritte in der Pflanzenzüchtung", berichtet Dr. Klaus Mayer (GSF- MIPS, Institut für Bioinformatik), dessen Team die einzigen nicht-amerikanischen Teilnehmer an dem Projekt stellt.

... mehr zu:
»Erbgut »Genom »Klone »Kreuzung »Mais »Maisgenom »Züchtung


Das Maisgenom ist ungefähr so groß wie das des Menschen und stellt damit das größte bisher untersuchte pflanzliche Genom dar. Seit die Pflanze vor fünf Millionen Jahren entstand, hat sich ihr Erbgut extrem gewandelt: Ursprünglich war Mais tetraploid, d.h. er besaß vier Chromosomensätze, da beide Ursprungspflanzen ihren kompletten Chromosomensatz in die Kreuzung einbrachten. Anschließend gingen allerdings sehr viele Gene wieder verloren, während andere verdoppelt und immer wieder variiert wurden. "Insgesamt umfasst das Maisgenom etwa 59 000 Gene, das sind ungefähr doppelt so viele wie im menschlichen Genom, das von der Größe her vergleichbar ist" erklärt Mayer. Die Struktur des Maisgenoms ist sehr komplex, da viele verschachtelte repetitive Elemente zwischen die Gene gestreut sind. Um das Ganze noch komplizierter zu machen, verändern zahlreiche Gene immer wieder ihre Position im Genom: Als springende Gene (Transposons) können sie sowohl innerhalb des Chromosoms an eine andere Stelle wechseln, als auch auf andere Chromosomen springen.

"Für die Analyse des Maisgenoms haben wir unsere genetischen Standardmethoden zum ersten Mal an einem wirklich großen Datensatz angewandt", verdeutlicht Mayer, "mit diesen im Hochdurchsatz-Verfahren relativ schnell und kostengünstig erworbenen Daten konnten wir die Genomstruktur so weit analysieren, dass wir wissen, wie viele Gene und repetitve Elemente vorhanden sind und auch, in welcher Reihenfolge die Gene aufeinander folgen."

Im Einzelnen erzeugten die Wissenschaftler 250.000 Klone, die Abschnitte des Erbguts enthalten. Die Wissenschaftler sequenzierten dann die "Rand-Sequenzen" der Klone und erhielten damit Informationen über 500.000 Sequenzen - Mayer schätzt, dass allein mit diesen Daten etwa 70 Prozent aller Gene markiert sein müssten.

In die richtige Reihenfolge gebracht wurden die Klone mit Hilfe sogenannter Fingerprinting Contigs: Dabei schneiden Enzyme die DNA an ganz bestimmten Stellen. Die Bruchstücke werden anschließend auf einem Gel in Banden aufgetrennt. Überlappen sich Banden verschiedener Klone, weiß man: hier überlappen die einzelnen Klone. Auf diese Weise werden Klone in Gruppen - die Fingerprinting Contigs - zusammengefasst, bis nur noch wenige "Löcher" übrig bleiben, für die es keine Überlappungen gibt. "Wir haben es geschafft, die 250.000 Klone auf weniger als 800 Gruppen zusammenzuschmelzen", berichtet Mayer stolz, "möglichst wenige Gruppen zu erhalten ist wichtig, da das Auffüllen der Löcher zwischen den Contigs zeit- und geldintensiv ist".

Mais gehört weltweit zu den wichtigsten Getreidepflanzen. Die bisher erreichten Ergebnisse bringen nicht nur die Wissenschaft einen großen Schritt voran, sondern sie eröffnen auch für die Praxis neue Möglichkeiten, z.B. für die Züchtung neuer leistungsfähiger Sorten. Dabei ist nicht die Erzeugung transgener Pflanzen das Ziel, sondern die konventionelle züchterische Verbesserung. Das Ziel neuer Züchtungen ist das Einkreuzen agronomisch wichtiger Merkmale wie Stress-Toleranz oder höherer Ertrag, um bestehende Maislinien zu verbessern. "Für die Züchtung ist es wichtig, diese Merkmale mit molekularen Sequenzen zu verknüpfen, d.h. wir müssen genetische Marker finden, um die für uns interessanten Bereiche möglichst eng eingrenzen", erläutert Mayer. Bereits mit den bisher vorliegenden Daten können viele Marker entwickelt werden, mit deren Hilfe nach einer konventionellen Kreuzung relativ leicht geprüft werden kann, ob das Ergebnis die gewünschten Eigenschaften trägt. Das nächste Ziel der Wissenschaftler ist nun die vollständige Sequenzierung des Maisgenoms, die in etwa drei bis fünf Jahren abgeschlossen sein könnte.

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Erbgut Genom Klone Kreuzung Mais Maisgenom Züchtung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie