Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution im Zeitraffer: Neue Einblicke ins Maisgenom

22.12.2004


Seit Mais vor etwa fünf Millionen Jahren aus der Kreuzung zweier eng verwandter Vorfahren entstand, ist sein Erbgut ständig im Wandel: manche Gene verschwinden, andere werden variiert und vervielfältigt, wieder andere wechseln häufig ihren Platz. Schon nach einer evolutionär gesehen kurzen Zeitspanne unterscheidet sich Mais auch von nahen Verwandten stark - vermutlich gibt es zwischen ihnen mehr genetische Unterschiede, als zwischen Mensch und Maus.



Eine deutsch-amerikanische Forschergruppe hat nun einen wesentlichen Meilenstein auf dem Weg zur Entschlüsselung dieser komplexen Genomstruktur erreicht: Erstmalig kennen die Wissenschaftler die Anzahl und die räumliche Anordnung der Mais-Gene. Mit diesen Informationen wurde eine wesentliche Grundlage für die Sequenzierung des gesamten Genoms erarbeitet. "Bereits jetzt liefern diese Ergebnisse wichtige Informationen nicht nur für die zukünftige Genomforschung, sondern auch für weitere Fortschritte in der Pflanzenzüchtung", berichtet Dr. Klaus Mayer (GSF- MIPS, Institut für Bioinformatik), dessen Team die einzigen nicht-amerikanischen Teilnehmer an dem Projekt stellt.

... mehr zu:
»Erbgut »Genom »Klone »Kreuzung »Mais »Maisgenom »Züchtung


Das Maisgenom ist ungefähr so groß wie das des Menschen und stellt damit das größte bisher untersuchte pflanzliche Genom dar. Seit die Pflanze vor fünf Millionen Jahren entstand, hat sich ihr Erbgut extrem gewandelt: Ursprünglich war Mais tetraploid, d.h. er besaß vier Chromosomensätze, da beide Ursprungspflanzen ihren kompletten Chromosomensatz in die Kreuzung einbrachten. Anschließend gingen allerdings sehr viele Gene wieder verloren, während andere verdoppelt und immer wieder variiert wurden. "Insgesamt umfasst das Maisgenom etwa 59 000 Gene, das sind ungefähr doppelt so viele wie im menschlichen Genom, das von der Größe her vergleichbar ist" erklärt Mayer. Die Struktur des Maisgenoms ist sehr komplex, da viele verschachtelte repetitive Elemente zwischen die Gene gestreut sind. Um das Ganze noch komplizierter zu machen, verändern zahlreiche Gene immer wieder ihre Position im Genom: Als springende Gene (Transposons) können sie sowohl innerhalb des Chromosoms an eine andere Stelle wechseln, als auch auf andere Chromosomen springen.

"Für die Analyse des Maisgenoms haben wir unsere genetischen Standardmethoden zum ersten Mal an einem wirklich großen Datensatz angewandt", verdeutlicht Mayer, "mit diesen im Hochdurchsatz-Verfahren relativ schnell und kostengünstig erworbenen Daten konnten wir die Genomstruktur so weit analysieren, dass wir wissen, wie viele Gene und repetitve Elemente vorhanden sind und auch, in welcher Reihenfolge die Gene aufeinander folgen."

Im Einzelnen erzeugten die Wissenschaftler 250.000 Klone, die Abschnitte des Erbguts enthalten. Die Wissenschaftler sequenzierten dann die "Rand-Sequenzen" der Klone und erhielten damit Informationen über 500.000 Sequenzen - Mayer schätzt, dass allein mit diesen Daten etwa 70 Prozent aller Gene markiert sein müssten.

In die richtige Reihenfolge gebracht wurden die Klone mit Hilfe sogenannter Fingerprinting Contigs: Dabei schneiden Enzyme die DNA an ganz bestimmten Stellen. Die Bruchstücke werden anschließend auf einem Gel in Banden aufgetrennt. Überlappen sich Banden verschiedener Klone, weiß man: hier überlappen die einzelnen Klone. Auf diese Weise werden Klone in Gruppen - die Fingerprinting Contigs - zusammengefasst, bis nur noch wenige "Löcher" übrig bleiben, für die es keine Überlappungen gibt. "Wir haben es geschafft, die 250.000 Klone auf weniger als 800 Gruppen zusammenzuschmelzen", berichtet Mayer stolz, "möglichst wenige Gruppen zu erhalten ist wichtig, da das Auffüllen der Löcher zwischen den Contigs zeit- und geldintensiv ist".

Mais gehört weltweit zu den wichtigsten Getreidepflanzen. Die bisher erreichten Ergebnisse bringen nicht nur die Wissenschaft einen großen Schritt voran, sondern sie eröffnen auch für die Praxis neue Möglichkeiten, z.B. für die Züchtung neuer leistungsfähiger Sorten. Dabei ist nicht die Erzeugung transgener Pflanzen das Ziel, sondern die konventionelle züchterische Verbesserung. Das Ziel neuer Züchtungen ist das Einkreuzen agronomisch wichtiger Merkmale wie Stress-Toleranz oder höherer Ertrag, um bestehende Maislinien zu verbessern. "Für die Züchtung ist es wichtig, diese Merkmale mit molekularen Sequenzen zu verknüpfen, d.h. wir müssen genetische Marker finden, um die für uns interessanten Bereiche möglichst eng eingrenzen", erläutert Mayer. Bereits mit den bisher vorliegenden Daten können viele Marker entwickelt werden, mit deren Hilfe nach einer konventionellen Kreuzung relativ leicht geprüft werden kann, ob das Ergebnis die gewünschten Eigenschaften trägt. Das nächste Ziel der Wissenschaftler ist nun die vollständige Sequenzierung des Maisgenoms, die in etwa drei bis fünf Jahren abgeschlossen sein könnte.

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Erbgut Genom Klone Kreuzung Mais Maisgenom Züchtung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise