Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution im Zeitraffer: Neue Einblicke ins Maisgenom

22.12.2004


Seit Mais vor etwa fünf Millionen Jahren aus der Kreuzung zweier eng verwandter Vorfahren entstand, ist sein Erbgut ständig im Wandel: manche Gene verschwinden, andere werden variiert und vervielfältigt, wieder andere wechseln häufig ihren Platz. Schon nach einer evolutionär gesehen kurzen Zeitspanne unterscheidet sich Mais auch von nahen Verwandten stark - vermutlich gibt es zwischen ihnen mehr genetische Unterschiede, als zwischen Mensch und Maus.



Eine deutsch-amerikanische Forschergruppe hat nun einen wesentlichen Meilenstein auf dem Weg zur Entschlüsselung dieser komplexen Genomstruktur erreicht: Erstmalig kennen die Wissenschaftler die Anzahl und die räumliche Anordnung der Mais-Gene. Mit diesen Informationen wurde eine wesentliche Grundlage für die Sequenzierung des gesamten Genoms erarbeitet. "Bereits jetzt liefern diese Ergebnisse wichtige Informationen nicht nur für die zukünftige Genomforschung, sondern auch für weitere Fortschritte in der Pflanzenzüchtung", berichtet Dr. Klaus Mayer (GSF- MIPS, Institut für Bioinformatik), dessen Team die einzigen nicht-amerikanischen Teilnehmer an dem Projekt stellt.

... mehr zu:
»Erbgut »Genom »Klone »Kreuzung »Mais »Maisgenom »Züchtung


Das Maisgenom ist ungefähr so groß wie das des Menschen und stellt damit das größte bisher untersuchte pflanzliche Genom dar. Seit die Pflanze vor fünf Millionen Jahren entstand, hat sich ihr Erbgut extrem gewandelt: Ursprünglich war Mais tetraploid, d.h. er besaß vier Chromosomensätze, da beide Ursprungspflanzen ihren kompletten Chromosomensatz in die Kreuzung einbrachten. Anschließend gingen allerdings sehr viele Gene wieder verloren, während andere verdoppelt und immer wieder variiert wurden. "Insgesamt umfasst das Maisgenom etwa 59 000 Gene, das sind ungefähr doppelt so viele wie im menschlichen Genom, das von der Größe her vergleichbar ist" erklärt Mayer. Die Struktur des Maisgenoms ist sehr komplex, da viele verschachtelte repetitive Elemente zwischen die Gene gestreut sind. Um das Ganze noch komplizierter zu machen, verändern zahlreiche Gene immer wieder ihre Position im Genom: Als springende Gene (Transposons) können sie sowohl innerhalb des Chromosoms an eine andere Stelle wechseln, als auch auf andere Chromosomen springen.

"Für die Analyse des Maisgenoms haben wir unsere genetischen Standardmethoden zum ersten Mal an einem wirklich großen Datensatz angewandt", verdeutlicht Mayer, "mit diesen im Hochdurchsatz-Verfahren relativ schnell und kostengünstig erworbenen Daten konnten wir die Genomstruktur so weit analysieren, dass wir wissen, wie viele Gene und repetitve Elemente vorhanden sind und auch, in welcher Reihenfolge die Gene aufeinander folgen."

Im Einzelnen erzeugten die Wissenschaftler 250.000 Klone, die Abschnitte des Erbguts enthalten. Die Wissenschaftler sequenzierten dann die "Rand-Sequenzen" der Klone und erhielten damit Informationen über 500.000 Sequenzen - Mayer schätzt, dass allein mit diesen Daten etwa 70 Prozent aller Gene markiert sein müssten.

In die richtige Reihenfolge gebracht wurden die Klone mit Hilfe sogenannter Fingerprinting Contigs: Dabei schneiden Enzyme die DNA an ganz bestimmten Stellen. Die Bruchstücke werden anschließend auf einem Gel in Banden aufgetrennt. Überlappen sich Banden verschiedener Klone, weiß man: hier überlappen die einzelnen Klone. Auf diese Weise werden Klone in Gruppen - die Fingerprinting Contigs - zusammengefasst, bis nur noch wenige "Löcher" übrig bleiben, für die es keine Überlappungen gibt. "Wir haben es geschafft, die 250.000 Klone auf weniger als 800 Gruppen zusammenzuschmelzen", berichtet Mayer stolz, "möglichst wenige Gruppen zu erhalten ist wichtig, da das Auffüllen der Löcher zwischen den Contigs zeit- und geldintensiv ist".

Mais gehört weltweit zu den wichtigsten Getreidepflanzen. Die bisher erreichten Ergebnisse bringen nicht nur die Wissenschaft einen großen Schritt voran, sondern sie eröffnen auch für die Praxis neue Möglichkeiten, z.B. für die Züchtung neuer leistungsfähiger Sorten. Dabei ist nicht die Erzeugung transgener Pflanzen das Ziel, sondern die konventionelle züchterische Verbesserung. Das Ziel neuer Züchtungen ist das Einkreuzen agronomisch wichtiger Merkmale wie Stress-Toleranz oder höherer Ertrag, um bestehende Maislinien zu verbessern. "Für die Züchtung ist es wichtig, diese Merkmale mit molekularen Sequenzen zu verknüpfen, d.h. wir müssen genetische Marker finden, um die für uns interessanten Bereiche möglichst eng eingrenzen", erläutert Mayer. Bereits mit den bisher vorliegenden Daten können viele Marker entwickelt werden, mit deren Hilfe nach einer konventionellen Kreuzung relativ leicht geprüft werden kann, ob das Ergebnis die gewünschten Eigenschaften trägt. Das nächste Ziel der Wissenschaftler ist nun die vollständige Sequenzierung des Maisgenoms, die in etwa drei bis fünf Jahren abgeschlossen sein könnte.

Michael van den Heuvel | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Erbgut Genom Klone Kreuzung Mais Maisgenom Züchtung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode für die Datenübertragung mit Licht

29.05.2017 | Physik Astronomie

Deutschlandweit erstmalig: Selbstauflösender Bronchial-Stent für Säugling

29.05.2017 | Medizintechnik

Professionelle Mooszucht für den Klimaschutz – Projektstart in Greifswald

29.05.2017 | Ökologie Umwelt- Naturschutz