Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gentherapie gegen schwache Herzen

15.12.2004


Information für muskelstärkendes Protein in Rattenherzen eingeschleust / Forscher des Universitätsklinikums Heidelberg mehrfach ausgezeichnet


Heidelberger Wissenschaftlern unter der Leitung von Dr. Patrick Most ist es gelungen, eine wirksame Gentherapie gegen Herzinsuffizienz (Herzmuskelschwäche) im Tiermodell zu entwickeln. Ihre wegweisenden Ergebnisse wurden in der aktuellen Dezemberausgabe der renommierten Fachzeitschrift "The Journal of Clinical Investigation" veröffentlicht.

Die Forscher benutzten ein Virus, um die genetische Information für das muskelstärkende Protein S100A1 über die Blutgefäße des Herzens erfolgreich in die geschwächten Herzmuskelzellen einzuschleusen. Der insuffiziente Herzmuskel bildet zu wenig S100A1 und durch die verminderte Pumpleistung ist das Organ nicht mehr in der Lage, den Organismus herzkranker Menschen und Tiere ausreichend mit Blut und somit Sauerstoff zu versorgen. Nach dem Gentransfer bildeten die Herzmuskelzellen der Tiere jedoch das muskelstärkende Protein S100A1 wieder in ausreichender Menge und die Schlagkraft der geschwächten Herzen normalisierte sich.


Die Herzmuskelschwäche gehört zu den häufigsten Erkrankungen weltweit. So sind in Deutschland etwa drei Prozent der Bevölkerung betroffen, bei den über 70-Jähringen sind es zehn Prozent. Ohne Behandlung führt Herzinsuffizienz zum Tod. Etwa 50 Prozent der Patienten erleiden einen plötzlichen Herztod ausgelöst durch Herzrhythmusstörungen.

Dr. Patrick Most - wissenschaftlicher Mitarbeiter der Abteilung für Kardiologie, Angiologie und Pulmologie der Medizinischen Universitätsklinik (Ärztlicher Direktor: Prof. Dr. Hugo A. Katus) - leitet das Labor für kardiale Stammzell- und Gentherapie am Otto-Meyerhof Zentrum des Universitätsklinikums Heidelberg. Für seine wegweisende Studie wurde er in diesem Jahr bereits mehrfach mit national und international renommierten Preisen ausgezeichnet. "Hervorzuheben", so sagt Dr. Most, "ist die ausgezeichnete Arbeit von Herrn cand. med. Mirko Völkers, der im Rahmen seiner Dissertation maßgeblich zum Gelingen dieser Studie beigetragen hat."

So erhielt das Forscherteam den Wissenschaftspreis der Deutschen Gesellschaft für Prävention und Rehabilitation von Herz-Kreislauferkrankungen, den Wilhelm P. Winterstein Förderpreis der Deutschen Herzstiftung sowie den Young Investigator Award der Deutschen Gesellschaft für Innere Medizin. Darüber hinaus wurden die Wissenschaftler für ihre Arbeit mit weiteren renommierten Preisen der European Society of Cardiology und der American Heart Association ausgezeichnet.

Bei Herzmuskelschwäche zu wenig "Kraftstoff" / Protein S100A1 stärkt Herzmuskel durch Normalisierung des gestörten Kalziumstoffwechsels

Im Mittelpunkt der Arbeit steht der universelle "Herzmuskeltreibstoff": Das Protein S100A1 erhöht die Schlagkraft und somit die Pumpleistung des Herzens. Das "Kraftprotein" und seine Funktion untersuchten die Forscher sowohl im Herz- als auch im Skelettmuskel. Sie fanden heraus, dass es die Kalziumströme steigert, die notwendig sind, damit der Muskel sich zusammenziehen kann. Die Wissenschaftler entdeckten, dass selbst größere Mengen von S100A1 in Mäuseherzen keine schädlichen Auswirkungen auf den Herzmuskel und das Überleben der Tiere haben. Im Gegenteil: Eine deutliche Leistungssteigerung in der Schlagkraft ihrer Herzen ist die Folge.

Dagegen findet sich in insuffizienten Herzen von Menschen und Tieren zu wenig von diesem "Kraftstoff". Deshalb versuchten die Forscher den Mangel an S100A1 im geschwächten Herzmuskel zu beheben. Hierfür "verpackten" sie das menschliche Gen für S100A1 in ein genetisch verändertes Virus und verabreichten dieses über einen Katheter in den Herzmuskel von Ratten, die nach einem Herzinfarkt eine Herzmuskelschwäche entwickelten.

Bereits eine Woche nach dem Gentransfer normalisierte sich die Funktion des Herzmuskels wieder. "Dies ist eine der ersten Studien, die die therapeutische Wirkung eines Gentransfers in ein insuffizientes Herz erprobt", sagt Dr. Most. "Die meisten Studien waren präventiv angelegt und untersuchten lediglich, ob ein bestimmtes Gen die Ausbildung einer Herzinsuffizienz abschwächen kann. Unsere Studie belegt jedoch zum ersten Mal, dass S100A1 in der Lage ist, wirksam das Vollbild der Herzmuskelschwäche in einem klinisch relevanten Tiermodell zu behandeln."

Die Wissenschaftler sind davon überzeugt, einen bisher einzigartig therapeutisch wirksamen Faktor gefunden zu haben. An isolierten Herzmuskelzellen konnten sie zeigen, dass der therapeutische Effekt von S100A1 hauptsächlich auf einer Wiederherstellung der gestörten Kalziumströme im insuffizienten Herzmuskel beruht. Die Identifikation Zielproteine von S100A1 innerhalb der Zelle belege, dass S100A1 an verschiedenen Stellen gleichzeitig regulatorisch eingreift. Durch seine vielseitige Wirkung stellt es die empfindliche Balance des Kalziumgehaltes im Herzen wieder her.

S100A1 stabilisiert zusätzlich den gestörten Natriumhaushalt sowie die defekte Energieproduktion des insuffizienten Herzmuskels

Zusätzlich wird der gestörte Natriumhaushaltes durch S100A1 wieder ausgeglichen. Beide Defekte werden ursächlich mit tödlichen Herzrhythmusstörungen in Verbindung gebracht wird. Neben der kraftsteigernden Wirkung wird deshalb auch vermutet, dass das Molekül den Herzrhythmus stabilisieren kann. "Zusätzlich konnten wir beobachten, dass die verminderte Konzentration der Energieträger im insuffizienten Herzmuskel durch einen S100A1 Gentransfer normalisiert wurde. Da wir S100A1 auch an den Mitochondrien - den Kraftwerken der Herzmuskelzellen - gefunden haben, scheint sich seine Wirkung auch in die Regulation des Energiehaushaltes auszudehnen", sagt Dr. Most. Zur Zeit analysiert das Heidelberger Team gemeinsam mit Frau Dr. Melanie Börries vom Biozentrum der Universität Basel die Bedeutung dieser aktuellen Daten.

Wirkstoff und Gentherapie für Herzinsuffizienz-Patienten in Vorbereitung

Aufgrund ihrer Studie setzen die Wissenschaftler nun große Hoffnungen auf das muskelstärkende S100A1. Sie verfolgen dabei vorrangig zwei Therapiestrategien: Einerseits fließen Erkenntnisse über wichtige Struktur- und Funktionsmerkmale des Proteins in die Entwicklung eines pharmakologischen Wirkstoffs. Er soll die Pumpleistung bei Herzschwäche-Patienten steigern. Andererseits arbeiten die Forscher mit Hochdruck an der Entwicklung eines für Menschen geeigneten S100A1-Gentransfers in den Herzmuskel.

Bevor eine klinische Erprobung der Gentherapie anlaufen kann, müssen die Wissenschaftler die Gentransfer-Strategien noch optimieren. So wirken die bisher verwendeten Adenoviren nur zeitlich begrenzt, da sie vom Immunsystem erkannt und ausgeschaltet werden können. So genannte adeno-assoziierte Viren hingegen können ihre genetische Information dauerhaft in die Zielzelle integrieren. Diese Virus-Boten könnten in naher Zukunft über einen Herzkatheter die genetische Information für den "Herzmuskeltreibstoff" übertragen. Die Forscher hoffen, so die Herzleistung von Herzinsuffizienz-Patienten nachhaltig zu verbessern und eine neuartige und innovative klinische Therapieform anbieten zu können.

Literatur:
Most et al. (2004): Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. The Journal of Clinical Investigation, 114; 1550-63

Der Originalartikel kann bei der Pressestelle des Universitätsklinikums Heidelberg unter contact@med.uni-heidelberg.de angefordert werden.

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.med.uni-heidelberg.de/aktuelles/
http://www.med.uni-heidelberg.de/omz/projektgruppen/pg_most.htm

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie