Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zytogenetische Methoden erleichtern Tumordiagnostik und Therapieentscheidung

13.12.2004


Deutsche Krebshilfe Preis 2003 für Genomforscher Peter Lichter

... mehr zu:
»Genom »Krebshilfe »Tumordiagnostik

Die Fluoreszenz-in-situ-Hybridisierung oder kurz FISH ist eines der Verfahren zur Erbgutanalyse, die Professor Peter Lichter vom Deutschen Krebsforschungszentrum entwickelt und für den klinischen Einsatz in der Tumordiagnostik etabliert hat. Diese wegweisenden, international anerkannten Leistungen auf dem Gebiet der molekularen Zytogenetik würdigt die Deutsche Krebshilfe heute mit der Verleihung des Deutsche Krebshilfe Preises 2003 an den 47-jährigen Biologen. Die Auszeichnung ist mit 10 000 Euro dotiert.

Die Tumordiagnostik hat durch FISH entscheidenden Auftrieb bekommen. Während die klassische Technik zur Untersuchung von Chromosomenschäden auf frische, teilungsfähige Zellen beschränkt ist, können mit der Fluoreszenz-Methode praktisch alle Zellarten und -stadien auf klinisch relevante Genveränderungen untersucht werden, selbst DNS von Gewebeproben aus dem Archiv wie Paraffinschnitte oder Blutausstriche. Dieses Verfahren erlaubt es damit auch, Aussagen über den Krankheitsverlauf bei Tumorpatienten zu treffen. Für den behandelnden Arzt ist die Prognose ein wichtiges Kriterium für eine individuell angepasste Therapie.


Professor Peter Lichter, Leiter der Abteilung Molekulare Genetik des Deutschen Krebsforschungszentrums, ist der achte Träger des Deutsche Krebshilfe Preises. Mit der Verleihung kommt die Deutsche Krebshilfe dem letzten Wunsch der Familie Dr. Wilhelm Hoffmann nach, herausragende Wissenschaftler auf dem Gebiet der Krebs-bekämpfung auszuzeichnen.

Hintergrund:

In den Vereinigten Staaten hatte gerade das Human-Genomprojekt, also die Entschlüsselung des menschlichen Erbguts, begonnen, als der Biologe Peter Lichter 1988 eine Methode zur schnellen und umfassenden Erbgutanalyse veröffentlichte: Die Fluoreszenz-in-situ-Hybridisierung. Genomforscher bekamen damit plötzlich die Möglichkeit, so gut wie jeden Erbgutabschnitt, jedes DNS-Stück, das sie fanden, schnell den Chromosomen zuzuordnen.

Das Prinzip der FISH-Methode: Definierte Erbgutschnipsel, DNS-Sonden, die mit fluoreszierenden Farbstoffen gekoppelt sind, werden eingesetzt, um in einer zu untersuchenden DNS-Probe ihr spiegelbildliches Gegenstück aufzuspüren und daran zu binden, man spricht von "Hybridisierung". Die Methode wird inzwischen weltweit in der Tumorforschung angewandt.

Mit FISH konnten zunächst lediglich bekannte chromosomale Bereiche nach Schäden abgesucht werden. Vor einigen Jahren hat Lichter - ebenso wie andere Forscher - die vergleichende genomische Hybridisierung entwickelt, ein Verfahren, mit dem sich schnell nach bislang unbekannten Genveränderungen suchen lässt. Der elegante Kniff: Die gesamte Erbsubstanz aus Tumorgewebe, die zuvor zerkleinert und mit Fluoreszenzfarbstoffen gekoppelt wurde, wird auf das komplette Genom gesunder Kontrollzellen gegeben. Die markierten Sonden binden auch hier an ihr spiegelbildliches Gegenstück. Ist die Erbsubstanz aus den Krebszellen an manchen Stellen vervielfacht, lagert sich dort mehr DNS an, und dieser Chromosomenabschnitt leuchtet stärker. Ist chromosomales Material verloren gegangen, ist das Signal schwächer. Das Muster der Gendefekte gibt wichtige Hinweise auf die Heilungsaussichten. Es wurde möglich, bei bestimmten Krebsformen Patientengruppen mit unterschiedlichemklinischem Krankheitsverlauf zu identifizieren und eine besser angepasste Behandlung durchzuführen.

Um die vergleichende genomische Hybridisierung für die Routinediagnostik einsetzen zu können, hat Peter Lichter inzwischen zusammen mit Kollegen einen DNS-Chip entwickelt, der den Vergleich des Erbguts von Tumorzellen mit dem von gesunden Zellen in großem Maßstab ermöglicht. Bei diesem Matrix-CGH genannten Verfahren lassen sich in einem einzigen Testdurchgang gleichzeitig mehrere tausend verschiedene DNS-Verluste oder -Zugewinne im Genom einer Tumorzelle identifizieren. Das Besondere daran: Das Testsystem ist sehr empfindlich für die typischen Chromosomenveränderungen und weist diese mit großer Zuverlässigkeit nach. Zugleich lässt sich die Analyse rasch und ohne großen Aufwand durchführen - ideale Voraussetzungen für den klinischen Einsatz.

Das Deutsche Krebsforschungszentrum hat die Aufgabe, die Mechanismen der Krebsentstehung systematisch zu untersuchen und Krebsrisikofaktoren zu erfassen. Die Ergebnisse dieser Grundlagenforschung sollen zu neuen Ansätzen in Vorbeugung, Diagnose und Therapie von Krebserkrankungen führen. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) e.V.

Dr. Julia Rautenstrauch | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Berichte zu: Genom Krebshilfe Tumordiagnostik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungsnachrichten

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie