Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemische Analytik belegt: Jeder Wein hat ein unverwechselbares Profil

25.06.2001


Mehr als 1.000 verschiedene Inhaltsstoffe sind im Wein enthalten. Der Jenaer Chemie-Professor Klaus Danzer vermag dank ausgefeilter Analyse-Apparatur anhand der unterschiedlichen Profile aus 60 organischen und 35 anorganischen Substanzen mit über 90-prozentiger Wahrscheinlichkeit Rebsorte und Herkunft sicher zu bestimmen. Für Qualitätsmanagement und Verbraucherschutz leistet seine Analytik, die selbst geringfügigste Verunreinigungen entdeckt, wichtige Dienste.

Experten, die Weine blind verkosten und deren Rebsorten und Anbaugebiete erkennen können, besitzen zumeist äußerst feine und trainierte Geschmacksknospen. Nicht so Klaus Danzer. Der 64-jährige Chemie-Professor macht Nachteile in der "Zungenfertigkeit" gegenüber gewieften Profi-Verkostern mit Hilfe apparativer Analytik und ausgefeilter Rechentechnik wett. Und hat dabei noch einen Vorsprung: Im Unterschied zu ihnen weiß er nur zu gut, was so ein Wein alles enthält. Indem er präzise misst, welche Spurenelemente in welchen Mengen eine Weinprobe enthält, bestimmt er Herkunft und Rebsorte.

Seit mehr als sieben Jahren befassen sich Klaus Danzer und sein Team aus Mitarbeitern und Studenten an der Universität Jena mit der Weinanalyse. "Wein als Substanzgemisch ist für einen Chemiker deshalb so interessant, weil er so komplex ist", meint der Professor trocken. Mehr als 1.000 verschiedene Inhaltsstoffe sind bekannt, "aber wir konzentrieren uns auf rund 60 organische und 35 anorganische Substanzen." Die organischen verraten die Rebsorte mit 97% Treffsicherheit, die anorganischen das Anbaugebiet mit 90% Wahrscheinlichkeit.

Dazu benutzt Danzer relativ aufwändige atom- und massenspektroskopische Verfahren. "Aber darin liegt nicht die eigentliche Kunst", verrät er, "viel schwieriger ist es, mit den riesigen Datenmengen umzugehen." Rechentechnisch löst er das Problem mit eigens entwickelten Programmen zur Mustererkennung: Jeder Wein hat sein spezifisches Profil an Inhaltsstoffen, und so lassen sich Silvaner von Riesling, Rheinhessen von Saale-Unstrut objektiv unterscheiden.

Verwundert wird sich der Weinkenner die Augen reiben, wenn er erfährt, was der geliebte Rebensaft so alles enthält: Barium, Eisen, Aluminium, Phosphor, Chrom, Magnesium, Blei, sogar Strontium und Uran sind nachweisbar. Aber alles natürlich nur in winzigsten Spuren von wenigen Nano- oder Mikrogramm pro Liter. "Das ist etwa so, als würde man einen Zuckerwürfel im Bodensee auflösen", schmunzelt Danzer, "davon schmeckt der See nicht süß." Für den Verbraucher sind die Inhaltsstoffe in diesen geringsten Mengen absolut ungefährlich.

Danzer: "Im Trinkwasser sind die Konzentrationen mitunter sogar höher. Noch nie war Wein so rein wie heute." Zum Beispiel in 100 Jahre alte Weinproben stellt man in der Regel deutlich höhere Bleikonzentrationen fest. Danzer: "Die sind dann meist immer noch ungefährlich, rühren aber von anderen Kelter- und Lagerverfahren her."

Interessanter für den Weinliebhaber sind da schon die so genannten Terpene. Darunter versteht der Chemiker eine ganze Gruppe organischer Kohlenwasserstoffe, die wesentlich das Geschmacksbild des gegorenen Kulturgetränks bestimmen. Fast alle dieser komplexen Kohlenstoff-Verbindungen sind relativ instabil und leicht flüchtig. Der erfahrene Chemiker wird deshalb seine Weinflasche niemals längere Zeit geöffnet stehen lassen. Ja selbst bei länger gelagerten Bouteillen zersetzen sich manche Terpene mit der Zeit - und das Bouquet wird "reifer", wie der Kenner meint.

Mit mehreren Weinforschungsinstituten und Winzergenossenschaften haben die Jenaer Chemiker in den vergangenen Jahren zusammengearbeitet. Sogar im Auftrag des Bundesinstituts für Verbraucherschutz haben sie Daten von über 1.700 Weinproben analysiert. "Als Qualitätskontrolle ist unser Verfahren natürlich bestens geeignet, weil es objektive Ergebnisse liefert", weiß Prof. Danzer. "Man muss es sich nur leisten können." Unerlaubte Zusatzstoffe oder falsche Etikettierungen können mit hoher wissenschaftlicher Beweiskraft entlarvt werden.

Nur eine Frage haben er und seine Mitstreiter im Jenaer Labor nicht lösen können: Bei der präzisen Bestimmung des Jahrgangs hilft die chemische Analyse nicht entscheidend weiter. Danzer: "Das bleibt den Kennern vorbehalten. Und schließlich ist ein guter Wein ja auch zum Trinken da."

Ansprechpartner: Prof. Dr. Klaus Danzer Lehrstuhl für Analytische Chemie der Friedrich-Schiller-Universität Jena E-Mail: klaus.danzer@uni-jena.de

Friedrich-Schiller-Universität Dr. Wolfgang Hirsch Referat Öffentlichkeitsarbeit Fürstengraben 1 D-07743 Jena Telefon: 03641 · 931030 Telefax: 03641 · 931032 E-Mail: roe@uni-jena.de

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Analytik Anbaugebiet Rebsorte

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten