Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Blumenstrauß aus Proteinen - Moleküle in der Nanowelt des Körpers

09.12.2004


Vier VASP-Proteine und ihre verschiedenen Aktin-Bindungspartner. Dieses Modell haben Forscher aus Würzburg und Dortmund entwickelt, nachdem sie die Struktur desjenigen VASP-Abschnitts aufgeklärt hatten, der für die Entstehung einer funktionsfähigen Überstruktur aus vier einzelnen VASP-Proteinen unabdingbar ist. Grafik nach: PNAS 101 (49): 17027-17032, 7. Dezember 2004


Ob Wundheilung, Blutstillung, Entzündungen oder die Ausbreitung von Krebszellen im Organismus - bei all diesen Prozessen spielen Zellbewegungen eine Rolle, an denen ein Protein namens VASP beteiligt ist. Forscher von der Uni Würzburg haben mit Kollegen aus Dortmund nun eine besonders wichtige Teilstruktur dieses Proteins aufgeklärt. Die Details sind in der US-Zeitschrift PNAS beschrieben.

... mehr zu:
»Aminosäure »Molekül »Protein »VASP

Der Stellenwert von VASP ("Vasodilator-Stimuliertes Phosphoprotein") offenbart sich dann am besten, wenn das Protein gestört ist. Fehlt es ganz, dann funktionieren etwa die für die Blutgerinnung wichtigen Blutplättchen nicht mehr richtig.

Für die verlässliche biologische Arbeitsleistung eines Proteins ist dessen dreidimensionale Struktur ausschlaggebend. Darum arbeiten weltweit viele Forscher daran, die Gestalt von Proteinen zu bestimmen. So auch die Gruppe von Professor Ulrich Walter am Institut für Klinische Biochemie und Pathobiochemie der Uni Würzburg und die Dortmunder Strukturbiologen um Professor Alfred Wittinghofer vom Max-Planck-Institut für Molekulare Physiologie.


Den Würzburger Forschern war seit langem bekannt, dass sich vier VASP-Proteine zusammenlagern müssen, um im Körper des Menschen richtig funktionieren zu können. Nun haben sie herausgefunden, dass für die Entstehung dieser Überstruktur die letzten 45 Aminosäuren des Proteins verantwortlich sind: Wenn dieser Teil fehlt, bleiben die einzelnen VASP-Moleküle für sich alleine.

Die dreidimensionale Struktur dieses wichtigen Proteinabschnitts von VASP wurde nun experimentell bestimmt. Er besteht aus vier spiralig miteinander verwundenen Aminosäureketten, die ihrerseits selbst wieder eine spiralförmige Raumstruktur haben. Dabei identifizierten die Forscher erstmalig ein bestimmtes Aminosäuremuster, dessen Existenz bereits 1953 von dem Chemie- und späteren Friedensnobelpreisträger Linus Pauling (1901 - 1994) vorhergesagt worden war. Auch gelang ihnen ein erster Einblick in die bislang unbekannte Gestalt des Gesamtmoleküls.

"Der vollständige Komplex aus den vier VASP-Molekülen ist demnach aufgebaut wie ein verkleinerter Blumenstrauß, der an einem Ende wie von unsichtbarer Hand zusammengehalten wird", erklärt Professor Walter. Diese Anordnung sei ideal zur Kontaktaufnahme mit anderen Molekülen. Das können zum Beispiel einzelne Aktin-Proteinfasern sein, die dann durch VASP in eine bestimmte Richtung zusammengebündelt und verlängert werden können. Solche und andere Proteinfasern treten im Zellskelett auf. Dieses Stütz- und Kabelsystem spielt bei Bewegungsprozessen der Zelle, an denen VASP nachweislich beteiligt ist, eine wichtige Rolle.

Die jetzt veröffentlichten Ergebnisse haben bezüglich der molekularen Funktion von VASP zu neuen Hypothesen geführt, welche die Würzburger Forscher nun experimentell überprüfen wollen. Die hier beschriebenen Arbeiten wurden von der Deutschen Forschungsgemeinschaft im Sonderforschungsbereich (SFB) 355 finanziell gefördert. Die Erkenntnis über die Blumenstrauß-Struktur von VASP stammt aus einem Projekt, das von Dr. Thomas Jarchau geleitet wurde.

VASP wurde 1987 in der Arbeitsgruppe von Ulrich Walter als neues Zielprotein in Blutplättchen und anderen Zellen des Blutgefäßsystems entdeckt. 1995 klärten die Würzburger dann die Aminosäure-Sequenz von VASP auf. Es besteht aus 380 Aminosäuren und entpuppte sich in der Folge als das erste Mitglied einer völlig neuen Proteinfamilie. Die Teilstruktur einer weiteren wichtigen VASP-Domäne wurde im Jahr 2000 von der Würzburger Gruppe in Zusammenarbeit mit Strukturbiologen vom Forschungsinstitut für Molekulare Pharmakologie in Berlin beschrieben.

Weitere Informationen:
Dr. Thomas Jarchau
T (0931) 201-45136
Fax (0931) 201-45153
E-Mail: jarchau@klin-biochem.uni-wuerzburg.de

Karin Kühnel, Thomas Jarchau, Eva Wolf, Ilme Schlichting, Ulrich Walter, Alfred Wittinghofer und Sergei V. Strelkov: "The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat", PNAS (Proceedings of the National Academy of Sciences of the USA) 101(49): Seiten 17027 - 17032, 7. Dezember 2004

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Aminosäure Molekül Protein VASP

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Tumoren ordentlich einheizen
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit