Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtschutzfaktor im Erbgut

03.12.2004


Schematische Darstellung des Versuchsaufbaus (nähere Erläuterung im Anhang zur Pressemitteilung). Abb.: Max-Born-Institut


Science: Eine besondere Struktur macht die DNA unempfindlich gegen UV-Strahlen


Die menschliche Erbsubstanz DNA ist äußerst robust, selbst wenn sie - etwa beim Sonnenbad - dem Beschuss mit schädlichen ultravioletten Strahlen ausgesetzt ist. Diese Stabilität schützt den Organismus. Denn jede Veränderung könnte Krankheiten wie Krebs oder gefährliche Mutationen im Erbgut hervorrufen. Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie haben jetzt zusammen mit Kollegen aus Polen einen der Schutzmechanismen unserer Erbsubstanz aufgeklärt. Sie berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Science (Bd. 306, 3. Dezember 2004, S.1765).

Der UV-Anteil des Sonnenlichts ist nichts anderes als energiereiche Strahlung. Trifft sie auf Moleküle, so kann sie die Bindungen zwischen den Atomen zerstören. Um das zu verhindern, muss die Energie, die die Moleküle bei der Lichteinstrahlung aufnehmen, möglichst rasch an die Umgebung abgegeben werden. Offenbar sind die DNA-Bausteine dafür besonders gut ausgerüstet. Der Doppelstrang der Erbsubstanz hat die Form einer in sich gewundenen Strickleiter. Die Sprossen entsprechen jeweils einem miteinander verbundenen Paar von Basen.


Die Eigenschaften einer solchen Sprosse haben MBI-Wissenschaftler um Dr. Thomas Schultz zusammen mit Kollegen aus München und Warschau in einem Modellsystem beobachtet. Zwei zusammengefügte Moleküle Aminopyridin verhalten sich unter Lichtbeschuss, wie man es von den DNA-Basenpaaren Adenin-Thymin oder Guanin-Cytosin erwarten kann. Mithilfe von ultrakurzen Laserpulsen deponierten die Forscher Energie in dem Molekül und beobachteten die darauffolgende Molekülbewegung. Die zeitliche Auflösung des so genannten Pump-Probe-Experimentes lag bei rund 120 Femtosekunden. Das sind 0,00000000000012 Sekunden (hundertzwanzig Milliardstel Millionstelsekunden). Thomas Schultz erläutert den Versuchsablauf: "Der erste Puls (Pump) stößt eine Bewegung der Molekülkerne und Elektronen an, der zweite Puls (Probe) zerbricht das Molekül und gibt uns einen ,Schnappschuss’ der Bewegung."

Mit diesen "Schnappschüssen" stellten die Wissenschaftler fest, dass ihr Modellbasenpaar die aufgenommene Energie innerhalb von 65 Pikosekunden an die Umgebung abgeben kann. Eine Pikosekunde sind 1000 Femtosekunden oder eine Millionstel Millionstelsekunde. Eine wichtige Rolle beim Energieaustausch spielt die Struktur des Moleküls. Waren die Basen wie in den Sprossen der DNA-Strickleiter angeordnet, wurde die Energie extrem rasch verteilt. In anderen Strukturen dagegen dauerte es mehr als zwanzigmal so lang, bis die Strahlungsenergie an die Umgebung abgegeben war. "Die Bewegung eines einzelnen Wasseratoms wandelt die aufgenommene Energie um", berichtet Schultz. Es habe sich also gezeigt, dass Molekülbewegung ebenso wie die Molekülstruktur eine wichtige Funktion in der Biologie hat. "Mit ultraschnellen Laserpulsen machen wir beides sichtbar."

Quelle: Thomas Schultz, Elena Samoylova, Wolfgang Radloff, Ingolf V. Hertel, Andrzej L. Sobolewski, Wolfgang Domcke: Efficient Deactivation of a Model Base Pair via Excited-State Hydrogen Transfer (Science, Bd. 306, S. 1765 - 1768, 3. Dezember 2004)

Kontakt:

Dr. Thomas Schultz, Max-Born-Institut Berlin, 030 / 6392 1240
schultz@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Basen Erbgut Erbsubstanz Molekül Molekülbewegung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics