Crotonaldehyd: Forscher wollen Krebsrisiko abschätzen

Entstehung und Wirkung von Crotonaldehyd Grafik: Eder

Die krebserregende Substanz Crotonaldehyd kommt in der Umwelt häufig vor und entsteht zudem bei natürlichen Stoffwechselvorgängen im Körper des Menschen. Unklar ist bislang, wie stark Crotonaldehyd dem Organismus tatsächlich zusetzt. Forscher von der Uni Würzburg wollen dem nun auf den Grund gehen.


Crotonaldehyd entsteht zum Beispiel bei der Verbrennung und findet sich darum in Abgasen, Tabakrauch oder erhitzten Ölen. „Es ist auch in Lebensmitteln vorhanden, vor allem in guten Rotweinen, die einer zweiten Fermentation unterworfen wurden“, sagt Erwin Eder, Toxikologe an der Uni Würzburg. Im Organismus des Menschen werde es unter dem Einfluss von Sauerstoff aus Fetten gebildet, und zwar durch oxidativen Stress und Lipidperoxidation.

Was macht das Crotonaldehyd so problematisch? Es greift die DNA an und bildet mit ihr so genannte Addukte, die zu Mutationen und damit zur Entstehung von Krebszellen führen können. Diese DNA-Addukte lassen sich darum als Biomarker nutzen, um das Krebsrisiko durch Crotonaldehyd abzuschätzen.

Eine Forschergruppe aus den USA hat unlängst berichtet, DNA-Addukte des Crotonaldehyd bei Tier und Mensch in praktisch allen Gewebeproben in großen Mengen gefunden zu haben. Diesen Befund erklärten die Wissenschaftler mit einer starken natürlichen Bildung des Crotonaldehyd über den Weg der Lipidperoxidation. „Würden tatsächlich ständig solche hohen DNA-Adduktspiegel im Organismus auftreten, dann wäre das Krebsrisiko beträchtlich“, so Professor Eder.

Die Würzburger Toxikologen konnten mit anderen Analyseverfahren die Ergebnisse der Amerikaner nicht bestätigen. Eder: „Wir fanden DNA-Addukte in einem vergleichbaren Ausmaß nur in Raucherlungen oder bei Versuchstieren, denen Crotonaldehyd verabreicht worden war.“ Die Methoden der Würzburger Wissenschaftler sind empfindlich genug, um damit unter 200 Millionen DNA-Bausteinen (Nukleotiden) ein einziges Addukt aufzuspüren.

Die Sachlage ist also widersprüchlich. Eder und sein Team wollen darum ermitteln, welche Mengen an DNA-Addukten in Abhängigkeit von der Exposition tatsächlich im Organismus vorkommen. „Erst dann lässt sich das Krebsrisiko von Crotonaldehyd genauer abschätzen und erst dann kann die Bedeutung der einzelnen Expositionsarten für das Krebsrisiko besser erkannt werden“, so der Würzburger Professor. Sein Projekt wird von der Deutschen Forschungsgemeinschaft finanziell gefördert.

Weitere Informationen: Prof. Dr. Erwin Eder, T (0931) 201-48926, Fax (0931) 201-48446, E-Mail: eder@toxi.uni-wuerzburg.de

Media Contact

Robert Emmerich idw

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer