Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweiß mit Poren

24.11.2004


"Biozeolithe": Peptide als neue Klasse mikroporöser organischer Feststoffe



In Wissenschaft und Technik begehrte Katalysatoren, Mikro-Reaktionskammern, Speicher und Molekularsiebe bestehen häufig aus Feststoffen mit mikroskopischen Hohlräumen, in denen andere Moleküle als "Gäste" Platz finden. Die wichtigste und vielseitigste Klasse poröser Materialien ist der Silikattyp der Zeolithe. Aber poröse Gerüste sind nicht nur bei anorganischen Stoffen zu finden, auch organische Materialien können von feinen Kanälen durchzogen sein. Ein kanadisch-russisches Team hat nun eine neue Klasse "Biozeolithe" entdeckt, die aus einfachen Peptiden bestehen.



In der belebten Natur spielen Hohlräume eine wichtige Rolle, etwa als Ionenkanäle und Membranporen. Aufgebaut sind diese sehr komplexen Gebilde aus Proteinen (Eiweißen). Dmitry V. Soldatov, Igor L. Moudrakovski und John A. Ripmeester wählten für ihre Studien lieber eine ganz einfache Eiweiß-Variante. Sie beschränkten sich auf zwei Proteinbausteine, die Aminosäuren Valin und Alanin, und verknüpften sie. Je nachdem welche Amino- an welche Säuregruppe gekuppelt wird, entstehen zwei verschiedene Dipeptide: Alanyl-Valin (AV) und Valyl-Alanin (VA). Beide kristallisieren zu mikroporösen Festkörpern: Die Kristalle bestehen aus gewundenen Dipeptidketten, in deren Zentren jeweils ein offener Kanal entsteht. Diese Kanälchen sind nicht gerade, sondern in sich verdrillt. Das Besondere: Alle Kanäle sind in die selbe Richtung, nämlich rechts herum, verdrillt. Bild und Spiegelbild, das heißt hier rechts- und linksdrehende Wendel, sind nicht identisch - solche Gebilde nennt man chiral. Auch Aminosäuren sind chiral, die natürliche Spielart ist die "linke" Sorte - die im Fall der Dipeptid-Kristalle zu rechtshändig verdrillten Kanälen führt. Stoffe mit chiralen Kanälen sind nur schwer herstellbar, aber sehr begehrt, denn sie kommen als Mittel für die oft ausgesprochen schwierige Trennung der "rechten" und "linken" Varianten chiraler Moleküle in Frage.

Obwohl die AV- und die VA-Kristalle sehr ähnlich aufgebaut und dimensioniert sind, gibt es deutliche Unterschiede: Das Edelgas Xenon wird in VA-Kanälchen wesentlich stärker festgehalten als in AV-Poren. Grund scheint der minimal kleinere Porendurchmesser von VA-Kristallen zu sein: In den kleineren Hohlräumen ist die Wechselwirkung der Gasatome mit der Porenwand intensiver.

Wenn man an die Vielfalt möglicher kleiner Peptide denkt, so scheint sich hier ein wahrer Kosmos an neuartigen, sehr robusten porösen Materialien zu eröffnen: Über Art, Anzahl und Reihenfolge der verknüpften Aminosäurebausteine könnten die Poreneigenschaften dieser "Biozeolithe" vielleicht gezielt auf eine spezielle Anwendung zugeschnitten werden. Ungiftige Peptide sind dabei auch für biomedizinische Anwendungen geeignet.

Kontakt:

Dr. D. V. Soldatov
Institute of Inorganic Chemistry
Siberian Branch of the Russian Academy of Sciences
Ac. Lavrentiev Av. 3
630090 Novosibirsk, Russland
Tel.: (+7) 3832-391346
Fax: (+7) 3832-344489
E-mail: soldatov@che.nsk.su

Dr. J. A. Ripmeester
Steacie Institure for Molecular Sciences
National Research Council of Canada
100 Sussex Drive
K1A0R6 Ottawa, Kanada

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Aminosäure Eiweiß Hohlräume Kanälen Peptid

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit