Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweiß mit Poren

24.11.2004


"Biozeolithe": Peptide als neue Klasse mikroporöser organischer Feststoffe



In Wissenschaft und Technik begehrte Katalysatoren, Mikro-Reaktionskammern, Speicher und Molekularsiebe bestehen häufig aus Feststoffen mit mikroskopischen Hohlräumen, in denen andere Moleküle als "Gäste" Platz finden. Die wichtigste und vielseitigste Klasse poröser Materialien ist der Silikattyp der Zeolithe. Aber poröse Gerüste sind nicht nur bei anorganischen Stoffen zu finden, auch organische Materialien können von feinen Kanälen durchzogen sein. Ein kanadisch-russisches Team hat nun eine neue Klasse "Biozeolithe" entdeckt, die aus einfachen Peptiden bestehen.



In der belebten Natur spielen Hohlräume eine wichtige Rolle, etwa als Ionenkanäle und Membranporen. Aufgebaut sind diese sehr komplexen Gebilde aus Proteinen (Eiweißen). Dmitry V. Soldatov, Igor L. Moudrakovski und John A. Ripmeester wählten für ihre Studien lieber eine ganz einfache Eiweiß-Variante. Sie beschränkten sich auf zwei Proteinbausteine, die Aminosäuren Valin und Alanin, und verknüpften sie. Je nachdem welche Amino- an welche Säuregruppe gekuppelt wird, entstehen zwei verschiedene Dipeptide: Alanyl-Valin (AV) und Valyl-Alanin (VA). Beide kristallisieren zu mikroporösen Festkörpern: Die Kristalle bestehen aus gewundenen Dipeptidketten, in deren Zentren jeweils ein offener Kanal entsteht. Diese Kanälchen sind nicht gerade, sondern in sich verdrillt. Das Besondere: Alle Kanäle sind in die selbe Richtung, nämlich rechts herum, verdrillt. Bild und Spiegelbild, das heißt hier rechts- und linksdrehende Wendel, sind nicht identisch - solche Gebilde nennt man chiral. Auch Aminosäuren sind chiral, die natürliche Spielart ist die "linke" Sorte - die im Fall der Dipeptid-Kristalle zu rechtshändig verdrillten Kanälen führt. Stoffe mit chiralen Kanälen sind nur schwer herstellbar, aber sehr begehrt, denn sie kommen als Mittel für die oft ausgesprochen schwierige Trennung der "rechten" und "linken" Varianten chiraler Moleküle in Frage.

Obwohl die AV- und die VA-Kristalle sehr ähnlich aufgebaut und dimensioniert sind, gibt es deutliche Unterschiede: Das Edelgas Xenon wird in VA-Kanälchen wesentlich stärker festgehalten als in AV-Poren. Grund scheint der minimal kleinere Porendurchmesser von VA-Kristallen zu sein: In den kleineren Hohlräumen ist die Wechselwirkung der Gasatome mit der Porenwand intensiver.

Wenn man an die Vielfalt möglicher kleiner Peptide denkt, so scheint sich hier ein wahrer Kosmos an neuartigen, sehr robusten porösen Materialien zu eröffnen: Über Art, Anzahl und Reihenfolge der verknüpften Aminosäurebausteine könnten die Poreneigenschaften dieser "Biozeolithe" vielleicht gezielt auf eine spezielle Anwendung zugeschnitten werden. Ungiftige Peptide sind dabei auch für biomedizinische Anwendungen geeignet.

Kontakt:

Dr. D. V. Soldatov
Institute of Inorganic Chemistry
Siberian Branch of the Russian Academy of Sciences
Ac. Lavrentiev Av. 3
630090 Novosibirsk, Russland
Tel.: (+7) 3832-391346
Fax: (+7) 3832-344489
E-mail: soldatov@che.nsk.su

Dr. J. A. Ripmeester
Steacie Institure for Molecular Sciences
National Research Council of Canada
100 Sussex Drive
K1A0R6 Ottawa, Kanada

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Aminosäure Eiweiß Hohlräume Kanälen Peptid

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics