Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Proteinstruktur zu neuen Arzneistoffen

22.11.2004


Dortmunder Max-Planck-Wissenschaftler stellen neue Strategie vor, bei der die Kernstruktur von Proteindomänen als Leitprinzip für die Entwicklung neuer molekularer Wirkstoffkandidaten dient


Vergleich von Proteinkernstrukturen. Überlagerung der katalytischen Kernstrukturen der Phosphatase (rot), der Acetylcholinesterase (blau) und der Dehydrogenase (grün).
Bild: Max-Planck-Institut für molekulare Physiologie


Schrittfolge einer Fahndungsstrategie, um strukturell ähnliche und pharmazeutisch relevante Proteine zu identifizieren.
Bild: Max-Planck-Institut für molekulare Physiologie



Die Untersuchung von Ähnlichkeiten zwischen Proteinen ist eine wichtige Strategie bei der Fahndung nach neuen Wirkstoffen. Bisher konzentrierte man sich hierbei auf die Aminosäuresequenz oder die Wirkungsweise der Proteine. Doch evolutionär gesehen ist es die räumliche Struktur, also die Faltung der Proteine, die wesentlich stärker konserviert ist als ihre Sequenz. Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben jetzt eine neue Strategie für die Suche nach Wirkstoffkandidaten vorgestellt, die auf so genannten Proteinstruktur-Ähnlichkeits-Clustern aufbaut. Diese können aus Enzymen mit ähnlicher Kernstruktur, die an ganz verschiedenen Reaktionen beteiligt sind und völlig unterschiedliche Funktionen haben, bestehen. So ergab eine kleine Bibliothek von nur 147 Verbindungen, die ausgehend von einem in der Natur vorkommenden Inhibitor eines dieser Enzyme erzeugt wurde, neue leistungsfähige und selektive Hemmstoffe für andere Enzyme dieses Clusters. Proteinstruktur-Ähnlichkeits-Cluster erscheinen daher als eine neue erfolgversprechende Methode, um - ausgehend von evolutionär erprobten Naturstoffen - neue Arzneistoffe zu entwickeln (PNAS, Early Edition, 17. November 2004).



Die Wissenschaftler um Professor Herbert Waldmann sind speziell an jenen kleinen, Arzneistoff-ähnlichen Molekülen interessiert, die krankheitsrelevante Proteine in ihrer Funktion beeinflussen. Die Forscher verfolgen dabei den Ansatz, dass Naturstoffe sich besonders gut als Startpunkte eignen, um von ihnen ausgehend neue Moleküle zu synthetisieren, die als Grundlage für die Entwicklung potentieller Wirkstoffkandidaten dienen könnten. Ihr Vorgehen beruht auf der Erkenntnis, dass natürlich vorkommende Substanzen, die von ihren Erzeugerorganismen, wie Pflanzen, Meeresschwämme, Pilze u.a., etwa zu Abwehrzwecken von potentiellen Fraßfeinden produziert werden, im Zuge der Evolution selektiert wurden, um mit bestimmten Proteindomänen effektiv in Wechselwirkung zu treten. Diese Proteindomänen stellen die Bausteine dar, aus denen Proteine aufgebaut sind. Zu ihrem Aufbau verwendet die Natur nur ein begrenztes Repertoire an Strukturmotiven (man schätzt diese auf ca. 1.000), die dann je nach Funktion des Proteins variiert werden.

Diesen strukturellen Konservativismus der Natur nutzen die Max-Planck-Wissenschaftler jetzt aus. Mit Hilfe bioinformatischer Methoden fahnden sie nach strukturell ähnlichen Proteinkernen und bilden daraus so genannte Proteinstruktur-Ähnlichkeits-Cluster (s. Abb. 2). Ein Naturstoff, der an eine dieser ähnlichen Strukturen bindet, dient dann als "Leitmotiv" für die Entwicklung einer ganzen Kollektion von Molekülen. Die Variation dieses Leitmotivs ist unabdingbar, zumal die Bindungstaschen der Proteine trotz ähnlicher Kernstruktur von der Natur variabel gestaltet sind. Dies ist wiederum die Voraussetzung für die unterschiedlichen Funktionen, die Proteine in einer Zelle bzw. einem Organismus wahrnehmen müssen. Die Wahrscheinlichkeit ist sehr hoch, dass man in einer derartigen Substanzkollektion neue Stoffe findet, die selektiv und mit guter Wirksamkeit die einzelnen Mitglieder eines Proteinstruktur-Ähnlichkeits-Clusters ansprechen können.

Konkret haben die Dortmunder Wissenschaftler eine Phosphatase, die bei der Zellteilung eine Rolle spielt und als potentielle Zielstruktur für eine medikamentöse Krebstherapie gilt, die Acetylcholinesterase, an der Alzheimer-Medikamente angreifen, und eine Dehydrogenase, die im Zusammenhang mit Diabetes, Fettsucht und Altersdemenz steht, als in ihrer Kernstruktur ähnliche Proteine identifiziert (s. Abb. 1). Die Forscher synthetisierten daraufhin auf der Grundlage eines Naturstoffs, der aus einem Meeresschwamm isoliert wurde und an die Phosphatase bindet, eine Kollektion von insgesamt 147 Verbindungen. Unter diesen Verbindungen haben sie mehrere Stoffe identifiziert, die die einzelnen Proteine des Ähnlichkeitsclusters selektiv hemmten. Auf diese Weise konnten die Forscher zeigen, dass die Entwicklung neuer Arzneistoff-Strukturklassen durch ihr Konzept erheblich erleichtert und beschleunigt werden kann.

Originalveröffentlichung: Marcus A. Koch, Lars-Oliver Wittenberg, Sudipta Basu, Duraiswamy A. Jeayraj, Eleni Gourzoulidou, Kerstin Reinecke, Alex Odermatt, and Herbert Waldmann, "Compound library development guided by protein structure similarity clustering and natural product structure", PNAS, Early Edition, 17. November 2004, doi 10.107073

Weitere Informationen erhalten Sie von:

Marcus Koch
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: +49 231 133-2432
Fax: +49 231 133-2499
E-Mail: marcus.koch@mpi-dortmund.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wüstenameisen lassen sich nicht in die Irre führen
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

23.11.2017 | Geowissenschaften

Leistungsfähigere und sicherere Batterien

23.11.2017 | Energie und Elektrotechnik

Ein MRT für Forscher im Maschinenbau

23.11.2017 | Maschinenbau