Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Proteinstruktur zu neuen Arzneistoffen

22.11.2004


Dortmunder Max-Planck-Wissenschaftler stellen neue Strategie vor, bei der die Kernstruktur von Proteindomänen als Leitprinzip für die Entwicklung neuer molekularer Wirkstoffkandidaten dient


Vergleich von Proteinkernstrukturen. Überlagerung der katalytischen Kernstrukturen der Phosphatase (rot), der Acetylcholinesterase (blau) und der Dehydrogenase (grün).
Bild: Max-Planck-Institut für molekulare Physiologie


Schrittfolge einer Fahndungsstrategie, um strukturell ähnliche und pharmazeutisch relevante Proteine zu identifizieren.
Bild: Max-Planck-Institut für molekulare Physiologie



Die Untersuchung von Ähnlichkeiten zwischen Proteinen ist eine wichtige Strategie bei der Fahndung nach neuen Wirkstoffen. Bisher konzentrierte man sich hierbei auf die Aminosäuresequenz oder die Wirkungsweise der Proteine. Doch evolutionär gesehen ist es die räumliche Struktur, also die Faltung der Proteine, die wesentlich stärker konserviert ist als ihre Sequenz. Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben jetzt eine neue Strategie für die Suche nach Wirkstoffkandidaten vorgestellt, die auf so genannten Proteinstruktur-Ähnlichkeits-Clustern aufbaut. Diese können aus Enzymen mit ähnlicher Kernstruktur, die an ganz verschiedenen Reaktionen beteiligt sind und völlig unterschiedliche Funktionen haben, bestehen. So ergab eine kleine Bibliothek von nur 147 Verbindungen, die ausgehend von einem in der Natur vorkommenden Inhibitor eines dieser Enzyme erzeugt wurde, neue leistungsfähige und selektive Hemmstoffe für andere Enzyme dieses Clusters. Proteinstruktur-Ähnlichkeits-Cluster erscheinen daher als eine neue erfolgversprechende Methode, um - ausgehend von evolutionär erprobten Naturstoffen - neue Arzneistoffe zu entwickeln (PNAS, Early Edition, 17. November 2004).



Die Wissenschaftler um Professor Herbert Waldmann sind speziell an jenen kleinen, Arzneistoff-ähnlichen Molekülen interessiert, die krankheitsrelevante Proteine in ihrer Funktion beeinflussen. Die Forscher verfolgen dabei den Ansatz, dass Naturstoffe sich besonders gut als Startpunkte eignen, um von ihnen ausgehend neue Moleküle zu synthetisieren, die als Grundlage für die Entwicklung potentieller Wirkstoffkandidaten dienen könnten. Ihr Vorgehen beruht auf der Erkenntnis, dass natürlich vorkommende Substanzen, die von ihren Erzeugerorganismen, wie Pflanzen, Meeresschwämme, Pilze u.a., etwa zu Abwehrzwecken von potentiellen Fraßfeinden produziert werden, im Zuge der Evolution selektiert wurden, um mit bestimmten Proteindomänen effektiv in Wechselwirkung zu treten. Diese Proteindomänen stellen die Bausteine dar, aus denen Proteine aufgebaut sind. Zu ihrem Aufbau verwendet die Natur nur ein begrenztes Repertoire an Strukturmotiven (man schätzt diese auf ca. 1.000), die dann je nach Funktion des Proteins variiert werden.

Diesen strukturellen Konservativismus der Natur nutzen die Max-Planck-Wissenschaftler jetzt aus. Mit Hilfe bioinformatischer Methoden fahnden sie nach strukturell ähnlichen Proteinkernen und bilden daraus so genannte Proteinstruktur-Ähnlichkeits-Cluster (s. Abb. 2). Ein Naturstoff, der an eine dieser ähnlichen Strukturen bindet, dient dann als "Leitmotiv" für die Entwicklung einer ganzen Kollektion von Molekülen. Die Variation dieses Leitmotivs ist unabdingbar, zumal die Bindungstaschen der Proteine trotz ähnlicher Kernstruktur von der Natur variabel gestaltet sind. Dies ist wiederum die Voraussetzung für die unterschiedlichen Funktionen, die Proteine in einer Zelle bzw. einem Organismus wahrnehmen müssen. Die Wahrscheinlichkeit ist sehr hoch, dass man in einer derartigen Substanzkollektion neue Stoffe findet, die selektiv und mit guter Wirksamkeit die einzelnen Mitglieder eines Proteinstruktur-Ähnlichkeits-Clusters ansprechen können.

Konkret haben die Dortmunder Wissenschaftler eine Phosphatase, die bei der Zellteilung eine Rolle spielt und als potentielle Zielstruktur für eine medikamentöse Krebstherapie gilt, die Acetylcholinesterase, an der Alzheimer-Medikamente angreifen, und eine Dehydrogenase, die im Zusammenhang mit Diabetes, Fettsucht und Altersdemenz steht, als in ihrer Kernstruktur ähnliche Proteine identifiziert (s. Abb. 1). Die Forscher synthetisierten daraufhin auf der Grundlage eines Naturstoffs, der aus einem Meeresschwamm isoliert wurde und an die Phosphatase bindet, eine Kollektion von insgesamt 147 Verbindungen. Unter diesen Verbindungen haben sie mehrere Stoffe identifiziert, die die einzelnen Proteine des Ähnlichkeitsclusters selektiv hemmten. Auf diese Weise konnten die Forscher zeigen, dass die Entwicklung neuer Arzneistoff-Strukturklassen durch ihr Konzept erheblich erleichtert und beschleunigt werden kann.

Originalveröffentlichung: Marcus A. Koch, Lars-Oliver Wittenberg, Sudipta Basu, Duraiswamy A. Jeayraj, Eleni Gourzoulidou, Kerstin Reinecke, Alex Odermatt, and Herbert Waldmann, "Compound library development guided by protein structure similarity clustering and natural product structure", PNAS, Early Edition, 17. November 2004, doi 10.107073

Weitere Informationen erhalten Sie von:

Marcus Koch
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: +49 231 133-2432
Fax: +49 231 133-2499
E-Mail: marcus.koch@mpi-dortmund.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten