Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie neue Stacheln des Seeigels nachwachsen

22.11.2004


Die harten, spröden Stacheln des Seeigels sind ein technisches Wunder. Von der Basis bis hin zur nadelscharfen Spitze bestehen sie aus einem einzigen Kristall, das innerhalb von wenigen Tagen nachwächst,wenn es abbricht. Jetzt haben Wissenschaftler des Weizmann Instituts zeigen können, wie die Seeigel dies schaffen.



Während viele Kristalle aus Atom- oder Molekülbestandteilen entstehen, die sich in Flüssigkeit auflösen, wobei Zucker und Salz hier die bekanntesten Beispiele darstellen, hat das Forschungsteam der Professoren Lia Addadi und Steve Weiner von der Abteilung für Strukturbiologie herausgefunden, dass der Seeigel eine andere Strategie benutzt. Das Material der Stacheln wird erst in einer nicht-kristallinen Form gesammelt, genannt Amorphous Calcium Carbonat (ACC). Anhäufungen von ACC werden um die Basis des gebrochenen Stackels herum aus den Zellen heraus bis hin zu dem abgebrochenen Ende geschoben. Innerhalb weniger Stunden nach Ankunft an dieser Stelle verwandelt sich das amorphe Material, dass aus eng aneinander gepackten aber ungeordneten Molekülen besteht, in ein Kalzit Kristall, in dem sich die Moleküle in gleichmäßigen Gitterformationen aufreihen.



In Zusammenarbeit mit der Studentin Yael Politi und Eugenia Klein und Talmon Arad von der Chemischen Forschungseinheit benutzte das Forschungsteam vier verschiedene Methoden der Untersuchung, einschließlich zweier Arten von Elektronmikroskopen, um zu beobachten wie das ACC abgelagert wird und sich in ein Kristall verwandelt. "Die Frage ist," sagte Weiner, "warum es eigentlich so schwierig ist, einen Prozess zu beobachten, der so grundlegend zu sein scheint. Wissenschaftler haben es mehr als einhundert Jahre lang studiert und Tatsache ist, dass wir neue Methoden entwickeln mussten, um das ACC in seiner kurzen Phase der Entstehung zu erfassen."

Die erfaßten Bilder zeigen mikroskopische Nadeln auf, die zuerst gerade aus dem Stumpf des alten Stachels herauswachsen und sich erst danach in einer verzweigten Gitterstruktur formieren, die sowohl hart als auch leicht ist. Die kristalline Struktur des alten Stachels stellt eine Art Schablone für die Aneinanderreihung der Moleküle in den Kristallen dar und gibt das komplizierte, genaue Muster des nachwachsenden Stachels vor.

Obwohl vorherige Studien des Weizmann-Gruppe gezeigt haben, dass junge Seeigel und Mollusken im Larvenstadium diesselbe Strategie benutzen, um interne Skelette zu bilden, so ist es doch das erste Mal, dass der Prozess bei ausgewachsenen Seetieren beobachtet wurde. Dass Larven und ausgewachsene Tiere diesselben Methoden benutzen, ist keineswegs selbstverständlich, denn ihr Lebensstil ist sehr verschieden und kann unterschiedliche biologische Prozesse bewirken. (Zum Beispiel: die winzige Seeigellarve ist durchsichtig und schwimmt herum, während der ausgewachsene runde, stachelige Seeigel am Meeresboden lebt.)

Da aber beide gleich vorgehen, glauben Addadi und Weiner, dass es sich hierbei um eine grundlegende Strategie handelt, die nicht nur von den nahen Verwandten des Seeigels wie etwa dem Seestern benutzt wird, sondern auch von einer breiten Bandweite stacheliger und muschelartiger Meereslebewesen wie z.B. Mollusken und Korallen. Darüber hinaus könnte sich die Idee, ein einziges Kristall heranwachsen zu lassen, nachdem erst einmal das Material in einer amorphen Phase produziert wird, als sehr hilfreich für Wissenschaftler und Ingenieure erweisen, die mit Materialien arbeiten und komplexe synthetische Materialien produzieren und formen wollen, die die Eigenschaften eines einzigen Kristalls besitzen.

Die Forschungsarbeit von Prof. Addadi wird finanziert von dem J & R Center for Scientific Research, dem Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, dem Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly, dem Philip M. Klutznick Fund for Research, der Minerva Stiftung Gesellschaft für die Forschung m.b.H., dem Women`s Health Research Center und dem Ziegler Family Trust, Encino, Ca. Sie hält den Dorothy-und-Patrick-Gorman-Professurlehrstuhl inne.

Prof. Weiners Forschungsarbeit wird finanziert von dem Helen and Martin Kimmel Center for Archaeological Science, dem Philip M. Klutznick Fund for Research, der Alfred Krupp von Bohlen und Halbach Stiftung, dem Women`s Health Research Center und von George Schwartzman, Sarasota, Fl. Er hält den Dr.-Walter-und-Trude-Borchardt-Professurlehrstuhl in Strukturbiologie inne.

Das Weizmann Institut in Rehovot, Israel, ist eine der weltweit führenden Forschungsinstitutionen. Es ist bekannt für seine breitgefächerte Erforschung der Naturwissenschaften und beschäftigt 2500 Wissenschaftler, Studenten, Techniker und Mitarbeiter. Die Forschungsarbeiten des Instituts befassen sich mit der Suche nach neuen Wegen der Bekämpfung von Krankheiten und Hunger, mit der Prüfung wichtiger Fragen in Mathematik und Komputerwissenschaften, der Physik und des Universums, der Entwicklung neuer Materialien und neuer Strategien zum Umweltschutz.

Ariela Rosen | idw
Weitere Informationen:
http://wis-wander.weizmann.ac.il
http://www.eurekalert.org

Weitere Berichte zu: ACC Addadi Forschungsarbeit Kristall Molekül Prozess Seeigel Stacheln

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops