Wie neue Stacheln des Seeigels nachwachsen

Die harten, spröden Stacheln des Seeigels sind ein technisches Wunder. Von der Basis bis hin zur nadelscharfen Spitze bestehen sie aus einem einzigen Kristall, das innerhalb von wenigen Tagen nachwächst,wenn es abbricht. Jetzt haben Wissenschaftler des Weizmann Instituts zeigen können, wie die Seeigel dies schaffen.

Während viele Kristalle aus Atom- oder Molekülbestandteilen entstehen, die sich in Flüssigkeit auflösen, wobei Zucker und Salz hier die bekanntesten Beispiele darstellen, hat das Forschungsteam der Professoren Lia Addadi und Steve Weiner von der Abteilung für Strukturbiologie herausgefunden, dass der Seeigel eine andere Strategie benutzt. Das Material der Stacheln wird erst in einer nicht-kristallinen Form gesammelt, genannt Amorphous Calcium Carbonat (ACC). Anhäufungen von ACC werden um die Basis des gebrochenen Stackels herum aus den Zellen heraus bis hin zu dem abgebrochenen Ende geschoben. Innerhalb weniger Stunden nach Ankunft an dieser Stelle verwandelt sich das amorphe Material, dass aus eng aneinander gepackten aber ungeordneten Molekülen besteht, in ein Kalzit Kristall, in dem sich die Moleküle in gleichmäßigen Gitterformationen aufreihen.

In Zusammenarbeit mit der Studentin Yael Politi und Eugenia Klein und Talmon Arad von der Chemischen Forschungseinheit benutzte das Forschungsteam vier verschiedene Methoden der Untersuchung, einschließlich zweier Arten von Elektronmikroskopen, um zu beobachten wie das ACC abgelagert wird und sich in ein Kristall verwandelt. „Die Frage ist,“ sagte Weiner, „warum es eigentlich so schwierig ist, einen Prozess zu beobachten, der so grundlegend zu sein scheint. Wissenschaftler haben es mehr als einhundert Jahre lang studiert und Tatsache ist, dass wir neue Methoden entwickeln mussten, um das ACC in seiner kurzen Phase der Entstehung zu erfassen.“

Die erfaßten Bilder zeigen mikroskopische Nadeln auf, die zuerst gerade aus dem Stumpf des alten Stachels herauswachsen und sich erst danach in einer verzweigten Gitterstruktur formieren, die sowohl hart als auch leicht ist. Die kristalline Struktur des alten Stachels stellt eine Art Schablone für die Aneinanderreihung der Moleküle in den Kristallen dar und gibt das komplizierte, genaue Muster des nachwachsenden Stachels vor.

Obwohl vorherige Studien des Weizmann-Gruppe gezeigt haben, dass junge Seeigel und Mollusken im Larvenstadium diesselbe Strategie benutzen, um interne Skelette zu bilden, so ist es doch das erste Mal, dass der Prozess bei ausgewachsenen Seetieren beobachtet wurde. Dass Larven und ausgewachsene Tiere diesselben Methoden benutzen, ist keineswegs selbstverständlich, denn ihr Lebensstil ist sehr verschieden und kann unterschiedliche biologische Prozesse bewirken. (Zum Beispiel: die winzige Seeigellarve ist durchsichtig und schwimmt herum, während der ausgewachsene runde, stachelige Seeigel am Meeresboden lebt.)

Da aber beide gleich vorgehen, glauben Addadi und Weiner, dass es sich hierbei um eine grundlegende Strategie handelt, die nicht nur von den nahen Verwandten des Seeigels wie etwa dem Seestern benutzt wird, sondern auch von einer breiten Bandweite stacheliger und muschelartiger Meereslebewesen wie z.B. Mollusken und Korallen. Darüber hinaus könnte sich die Idee, ein einziges Kristall heranwachsen zu lassen, nachdem erst einmal das Material in einer amorphen Phase produziert wird, als sehr hilfreich für Wissenschaftler und Ingenieure erweisen, die mit Materialien arbeiten und komplexe synthetische Materialien produzieren und formen wollen, die die Eigenschaften eines einzigen Kristalls besitzen.

Die Forschungsarbeit von Prof. Addadi wird finanziert von dem J & R Center for Scientific Research, dem Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, dem Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly, dem Philip M. Klutznick Fund for Research, der Minerva Stiftung Gesellschaft für die Forschung m.b.H., dem Women`s Health Research Center und dem Ziegler Family Trust, Encino, Ca. Sie hält den Dorothy-und-Patrick-Gorman-Professurlehrstuhl inne.

Prof. Weiners Forschungsarbeit wird finanziert von dem Helen and Martin Kimmel Center for Archaeological Science, dem Philip M. Klutznick Fund for Research, der Alfred Krupp von Bohlen und Halbach Stiftung, dem Women`s Health Research Center und von George Schwartzman, Sarasota, Fl. Er hält den Dr.-Walter-und-Trude-Borchardt-Professurlehrstuhl in Strukturbiologie inne.

Das Weizmann Institut in Rehovot, Israel, ist eine der weltweit führenden Forschungsinstitutionen. Es ist bekannt für seine breitgefächerte Erforschung der Naturwissenschaften und beschäftigt 2500 Wissenschaftler, Studenten, Techniker und Mitarbeiter. Die Forschungsarbeiten des Instituts befassen sich mit der Suche nach neuen Wegen der Bekämpfung von Krankheiten und Hunger, mit der Prüfung wichtiger Fragen in Mathematik und Komputerwissenschaften, der Physik und des Universums, der Entwicklung neuer Materialien und neuer Strategien zum Umweltschutz.

Media Contact

Ariela Rosen idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer