Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Einblicke in den intakten Zellkern

29.10.2004


Max-Planck-Wissenschaftler gelingen wichtige Einblicke in die Funktionsweise der Pforten und Schleusen des Zellkerns "in Aktion"


Dreidimensionale Rekonstruktion des Kernporenkomplexes aus dem Schleimpilz Dictyostelium. (Abb. oben links): Ansicht vom Zytoplasma aus. Der Transportkanal ist von acht ’zytoplasmatischen Filamenten’ umringt. (Abb. oben rechts): Ansicht aus dem Kern. Auf dieser Seite befindet sich die Korbstruktur (braun). (Abb. unten): Schematische Darstellung mit Abmessungen und Bezeichnung der relevanten Strukturen Die zentrale Öffnung ist ungefähr 60 nm groß.

Bild: Max-Planck-Institut für Biochemie



Innerhalb einer Zelle herrscht reger Verkehr, weil das Erbgut, also die Baupläne des Lebens, und alle wichtigen Organellen und Protein-Komplexe für Stoffwechsel, Wachstum oder auch Zellteilung durch die Hülle des Zellkerns voneinander getrennt sind. Seit Jahren versuchen Wissenschaftler zu verstehen, wie die winzigen Poren in der Kernhülle aufgebaut sind und welche Aufgaben ihre einzelnen Bausteine übernehmen. In enger Kooperation sind jetzt mehrere Forschungsgruppen am Max-Planck-Institut für Biochemie in Martinsried zu völlig neuen Erkenntnissen über die Kernporen gekommen (Science Express, 28. Oktober 2004). Mit Hilfe der Kryo-Elektronentomographie, einer am Institut entwickelten speziellen Technik der Elektronenmikroskopie, ist es ihnen gelungen, zum ersten Mal verschiedene Strukturen der Kernporen von völlig intakten Zellkernen des Schleimpilzes Dictyostelium darzustellen. Damit kann man jetzt erstmalig aus der Struktur dieser "Pforten" des Zellkerns während ihrer natürlichen Arbeit auf ihre verschiedenen Funktionen schließen. Das Verständnis der Transportvorgänge durch die Kernporen ist von grundlegender medizinischer Bedeutung, denn Störungen der korrekten Vermittlung von Signalen in oder aus dem Zellkern spielen bei der Entwicklung verschiedener Krankheiten eine Rolle.



Der Zellkern beherbergt die genetische Information (DNA) aller höheren Organismen, die bei Zellteilungen völlig identisch verdoppelt werden muss. Im Zellkern erfolgt auch die Abschrift der DNA für den Aufbau von Proteinen, die "Macher" von Wachstum, Entwicklung und Stoffwechsel. Der Zellkern ist von einer Doppelmembran umgeben, die ihn von der übrigen Zelle abgrenzt. In der Kernmembran sitzen Hunderte Poren, Pforten, durch die permanent Tausende von Molekülen, wie Proteine oder RNA, transportiert werden. Auf diese Weise gelangen die Baupläne für Eiweißstoffe aus dem Zellkern zu den Proteinfabriken, den Ribosomen, während umgekehrt Signale aus dem Zellkörper im Kern zelluläre Programme, wie Wachstumsstopp, Zellteilung oder -differenzierung, anschalten. Trotz eines Durchmesser von etwa 125 Nanometer sind die Kernporen extrem selektiv - sie lassen nur bestimmte Proteine in den Zellkern hinein oder hinaus. Die Poren selbst bestehen aus etwa 30 Protein-Bausteinen.

Die Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried konnten jetzt erstmals sichtbar machen, wie diese Poren im natürlichen Zustand in einer lebenden Zelle aussehen. An diesem Erfolg waren Forscher aus drei verschiedenen Abteilungen und Forschungsgruppen des Instituts beteiligt: Die dreidimensionalen Bilder der Kernporenstruktur wurden durch Mitarbeiter aus der Abteilung Molekulare Strukturbiologie unter Leitung von Prof. Wolfgang Baumeister erstellt. Sie sind Experten auf dem Gebiet der Kryo-Elektronentomographie, einer Technik, die dreidimensionale Aufnahmen von lebenden Zellen ermöglicht. Prof. Frauke Melchior, ehemalige Nachwuchsgruppenleiterin am Institut und inzwischen Biochemie-Lehrstuhlinhaberin an der Universität Göttingen, hat ihre Expertise zur Überprüfung der Aktivität der Kernporen beigesteuert. Und Dr. Günther Gerisch, Leiter einer Emeritusgruppe, brachte schließlich seine Kenntnisse über die Kultur von Dictyostelium und Isolierung intakter und funktionsfähiger Zellkerne ein. Federführend waren Martin Beck und Friedrich Förster, deren Doktorarbeiten im Rahmen der Studie durchgeführt wurden. Sie wurden unterstützt von Mary Ecke, Dr. Jürgen Plitzko und Dr. Ohad Medalia, der bereits das Zytoskelett des Schleimpilzes mittels Kryo-Elektronentomographie erfolgreich untersucht hatte [1] (Science 2002).

Aus früheren Studien war bereits bekannt, dass eine Kernpore aus verschiedenen Strukturelementen besteht: Rund 30 Porenproteine, Nucleoporine, bilden die runden Pforten. Zum Inneren des Zellkernes bilden die Proteine einen Korb, und zum Zytoplasma Tentakel-ähnliche Ausläufer, die so genannten Filamente. Dazwischen befinden sich mehrere Ringe, die zusammen einen zentralen Transportkanal formen. Aktive Kernporen konnte man bisher entweder mit dem Lichtmikroskop und Fluoreszenzfarbstoffen auf ihre Funktion (Welche Proteine sind wann am Transport beteiligt?) oder mit dem Elektronenmikroskop ihre Struktur (Wie sehen die fixierten Kernporen unter dem Elektronenmikroskop aus?) ergründen. Mit der am Max-Planck-Institut für Biochemie entwickelten Kryo-Elektronentomographie haben die Wissenschaftler nun erstmals Studien an voll funktionsfähigen Kernporen durchgeführt, so dass man aus der Struktur Rückschlüsse auf die tatsächliche Funktionsweise der Kernporen ziehen kann.

Dazu isolierten die Max-Planck-Forscher Zellkerne aus dem Schleimpilz Dictyostelium, erfassten rund 250 verschiedene Kernporen-Komplexe aus ganz verschiedenen Winkeln und rekonstruierten daraus die dreidimensionale Struktur der Kernporen. Sehr deutlich lassen sich in den 3D-Bildern die unterschiedlichen Ringe der Kernporen, die den zentralen Transportkanal bilden, sowie die filamentösen Fortsätze auf der einen und die Korbstruktur auf der anderen Seite unterscheiden (s. Abb).

Nach einer wissenschaftlichen Theorie wird die Struktur im zentralen Kanal (central plug or transporter) zum Teil durch Cargo-Moleküle (Partikel die gerade transportiert werden) und zum Teil durch interagierende Bestandteile des Kernporenkomplexes gebildet. Durch eine statistische Analyse der rund 250 einzelnen Poren konnten Beck und seine Kollegen zeigen, dass diese Masse im zentralen Kanal eindeutig an zwei bevorzugten Positionen lokalisiert ist. In Abhängigkeit von der Position ergaben sich zwei Hauptzustände der Kernpore mit deutlichen strukturellen Unterschieden, die von den Wissenschaftlern CF-Klasse (cytoplasmic filament class) bzw. LR-Klasse (luminal spoke ring class) genannt werden. Bei der CF-Konfiguration lässt sich die Mehrheit der Filamente gemeinsam mit dem Cargo-Molekül in einer Ebene ausmachen, d.h. das zu transportierende Molekül wird festgehalten. Dagegen waren die einzelnen Filamente in der LR-Konfiguration nicht als eindeutige Strukturen auszumachen. Die Dichten waren variabler, ein Indiz dafür, dass sich diese Strukturen frei im Raum bewegten, also während der Bildaufnahme nicht starr an den Kernporen fixiert waren. Diese Ergebnisse stehen im Widerspruch zu bisherigen wissenschaftlichen Theorien, die den inneren Kanal der Kernporen als statisches Gebilde beschreiben. Die nun sichtbar gewordene Dynamik der Struktur im zentralen Kanal zeigt, dass es sich dabei nicht um einen statischen Proteinkomplex handelt.

Für Wolfgang Baumeister, Direktor der Abteilung Molekulare Strukturbiologie am Max-Planck-Institut für Biochemie, sind die neuen Ergebnisse ein wichtiger Meilenstein auf dem Weg, die Zusammenhänge zwischen Struktur und Funktion der Kernporen endgültig aufzuklären: "Wenn wir jetzt noch Experimente mit definierten Transport-Molekülen durchführen, werden wir aus unseren Strukturdaten der Elektronentomographie ganz eindeutige Rückschlüsse auf die Funktion des Kernporen-Komplexes in der Kernmembran ziehen können und den Weg beschreiben den Cargo nimmt." Denn noch wissen die Wissenschaftler nicht, ob die Cargo-Moleküle, die sie in ihren Bildern ausgemacht haben, von den Kernporen nach innen oder nach außen transportiert wurden, als sie die Kernporen bei ihrer Arbeit beobachteten.

Originalveröffentlichung:

Martin Beck, Friedrich Förster, Mary Ecke, Jürgen M. Plitzko, Frauke Melchior, Günther Gerisch, Wolfgang Baumeister and Ohad Medalia: "Nuclear Pore Complex Structure and Dynamics revealed by Cryoelectron Tomography", Science Express, 28 October 2004

Weitere Informationen erhalten Sie von:

Eva-Maria Diehl, Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried bei München
Tel.: +49 89 8578-2824
E-Mail: diehl@biochem.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft

Weitere Berichte zu: Kanal Kernporen Kryo-Elektronentomographie Poren Protein Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Quantenlineal für Biomoleküle
22.08.2017 | Universität Wien

nachricht Wie ein Bakterium von Methanol leben kann
22.08.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Quantenlineal für Biomoleküle

22.08.2017 | Biowissenschaften Chemie

Prostatakrebs: Bluttest sagt Tumorresistenz vorher

22.08.2017 | Biowissenschaften Chemie

IVAM-Marketingpreis würdigt zum zehnten Mal überzeugendes Technologiemarketing

22.08.2017 | Förderungen Preise