Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufbau von einfachen, komplexen Zellsystemen und deren Anwendungsmöglichkeiten in der Zahnheilkunde

22.10.2004


Zusammenfassung der mit dem Miller-Preis 2004, dem bedeutendsten und mit 10.000 Euro dotierten Wissenschaftspreis der Deutschen Gesellschaft für Zahn-, Mund- und Kieferheilkunde (DGZMK), ausgezeichneten Arbeit von Priv.-Doz. Dr. Pascal Tomakidi (Heidelberg).



Das menschliche Parodont oder auch Zahnhalteapparat besteht aus verschiedenen Geweben, wie dem Zahnfleisch-Epithel, auch Gingiva genannt, dem Bindegewebe der Gingiva, dem Parodontalligament, das als spezialisiertes Bindegewebe den Zahn im Knochenfach des Alveolarknochens aufhängt, dem Wurzelzement des Zahns und dem Alveolarknochen des Ober- oder Unterkiefers. Zeit unseres Lebens kommunizieren die Zellen dieser Gewebe untereinander aber auch zwischen den Geweben über Moleküle, die als Wachstumsfaktoren bezeichnet werden oder aber mechanische Kräfte, die das Parodont in seiner Gesamtheit erhalten und hierdurch seine Funktion in unserem Körper sicherstellen. Diese Kommunikation zwischen Zellen eines und oder verschiedener Gewebe, auch als Zell-oder Gewebeinteraktion bezeichnet, steuert den ganz natürlichen Ablauf von Aufbau und Abbau der Zellen der parodontalen Gewebe, wobei der Aufbau durch die Teilung von Zellen, auch Proliferation genannt und der Abbau durch den Verlust von Zellen infolge von Reifungsprozessen, die als Differenzierung bezeichnet werden, charakterisiert ist. Dieses natürliche Fließgleichgewicht von Zell-Proliferation und -Differenzierung im Parodont, aber auch in allen anderen Geweben unseres Körpers, bezeichnet man als "Gewebshomöostase".



Diese Homöostase oder Balance kann durch verschiedene innere oder äußere Einwirkungen in unterschiedlich ausgeprägtem Maße gestört werden, was sich in Erkrankungen des Parodonts äußert. Hierzu zählen beispielsweise die Zahnfleischentzündung, auch Gingivitis genannt, bei der, wenn sie durch Bakterien hervorgerufen wird, die Abwehrreaktionen unseres Körpers dazu führen, dass unter anderem das parodontale Bindegewebe zerstört wird. Unter dem Einfluss krebserregender Stoffe können sich beispielsweise in Zellen der Mundschleimhaut erbfeste Veränderungen der Erbsubstanz DNA, sogenannte Mutationen etablieren, die im Extremfall zur Entstehung bösartiger Geschwulste führen können. Im Falle bösartiger Geschwulste ist die Gewebshomöostase durch die Mutationen so gestört, dass die Zellteilung und das Zellwachstum im Geschwulst-bildenden Gewebe unkontrolliert abläuft.

Wie mechanische Kräfte und die große Vielzahl an Wachstumsfaktoren, die an der Steuerung der Gewebshomöostase beteiligt sind, auf die Zellen der parodontalen Gewebe wirken und welche Antworten sie in den jeweiligen Zellen hervorrufen ist bis heute nur bedingt geklärt. Dies bedeutet, dass die Homöostase der parodontalen und auch der anderen Gewebe in unserem Körper, also die in vivo Situation, sehr "komplex" ist. Diese Komplexität charakterisiert generell die in vivo Situation und trifft somit auch für die Störungen der Gewebshomöostase im Falle von Erkrankungen zu.

Um die Steuerung sowie Störungen der Gewebshomöostase und damit die Interaktionen der Zellen der unterschiedlichen Gewebe auf molekularer Ebene verstehen zu lernen, kann man Zellen eines Gewebes im Labor, also in vitro züchten. Handelt es sich bei den für die geplanten Experimente eingesetzten Zellen um solche, die frisch aus dem Gewebe isoliert werden, bezeichnet man sie als Primärkulturen. Da die Zellen in diesen Primärkulturen losgelöst vom Umgebungsgewebe zu einem meist einschichtigen Zellrasen, dem "Monolayer" heranwachsen, spricht man von einem einfachen Zellkultursystem, das gegenüber der in vivo Situation den Vorteil hat, deren Komplexität stark zu vereinfachen. Mit Hilfe solcher einfachen Zellkultursysteme ist es möglich, die direkte Wirkung äußerer Einflüsse, wie z.B. Strahlung, Pharmaka, Toxine, aber auch bereits bekannter Wachstumsfaktoren zu untersuchen. Desweiteren eignen sich diese Systeme auch, um die Wirkung mechanischer Kräfte oder aber von Biomaterialien oder in der Zahnheilkunde verwendeten Werkstoffen, auf die Zellen des entsprechenden Gewebes zu testen. Diese einfachen Zellkultursysteme besitzen allerdings nur eine beschränkte Übertragbarkeit hinsichtlich der an ihnen erarbeiteten Ergebnisse auf die komplexe in vivo Situation. Aus diesem Grunde ist zur Beantwortung bestimmter Fragestellungen, insbesondere auf dem Gebiet der Ausbildung bösartiger Geschwulste unserer Haut oder der Schleimhäute der Mundhöhle, die zu den "Carcinomen" zählen, der Tierversuch erforderlich.

So lassen sich heutzutage beispielsweise die molekularen Grundlagen während der Frühphase der Entstehung bösartiger Hautcarcinome durch Transplantation von in vitro vorkultivierten Carcinom-bildeneden Zellen der Haut auf Mäuse, die kein Immunsystem besitzen, untersuchen. Möchte man nun losgelöst vom Tierversuch Untersuchungen an der Haut oder den Schleimhäuten der Mundhöhle auf dem Gebiet der Gewebshomöostase sowie deren Störungen, der Wirkung von in der Zahnheilkunde verwendeten Werkstoffen oder aber in limitiertem Maße auch der Entstehung von Carcinomen durchführen, so gelingt dies heutzutage, zumindest teilweise, auch unter in vitro Bedingungen. Hierzu kultiviert man die Zellen zweier Gewebe, die auch im Körper miteinander kommunizieren, beispielsweise Zellen des Zahnfleisch-Epithels und des Zahnfleisch-Bindegewebes in einer möglichst körpernahen Anordnung. Dabei legt man zunächst, wie bereits erwähnt, Primärkulturen von Zellen der beiden Gewebe an, um die nötige Zellzahl zu erreichen. Anschließend kultiviert man die Zellen dann so, dass die Bindegewebszellen, auch Fibroblasten genannt, in einem Gelträger aus Kollagen wachsen und die Zellen des Zahnfleisch-Epithels, auch Keratinozyten genannt, auf der Oberfläche des Kollagen-Gelträgers wachsen. In einem solchen, im Gegensatz zum Monolayer komplexen Zellsystem, werden die Fibroblasten und die Keratinozyten räumlich getrennt kokultiviert und wachsen in einer Anordnung, wie sie auch im Gewebe des Körpers, also in vivo vorliegt. Hierdurch gelingt es, auch unter in vitro Bedingungen ein Zahnfleisch-Epithel zu kultivieren, in dem, wie im natürlichen Epithel, Proliferation und Differenzierung ablaufen. Aus diesem Grunde wird dieses komplexe Zellsystem auch als "organotypischen Kokultur" bezeichnet. Der entscheidende Vorteil dieses komplexen Zellsystems liegt darin, dass es aufgrund seiner Orientierung an die Situation des Körpers Untersuchungen zu den vielfältigsten Fragestellungen im Bereich der Zahnheilkunde unter in vivo-näheren Bedingungen gestattet. Damit erweitert die "organotypische Kokultur" das Spektrum von primären einfachen Monolayer-Zellkulturen parodontaler Gewebe und stellt ein wertvolles Instrument dar, um auf der Basis humaner Zellen zukünftig Ergebnisse zu erarbeiten, deren Übertragbarkeit auf die Situation im Körper weniger limitiert ist, als die der einfachen Zellkultursysteme. Unabhängig vom Komplexitätsgrad eröffnen Zellkulturen auf der Grundlage humaner Zellen die langfristige Perspektive, normierte Testverfahren auf der Basis von Nagerzellen durch Art- und Gewebe-spezifische Zielzellen zu ersetzen. In diesem Zusammenhang bieten "organotypische Kokulturen" die Möglichkeit, Tierversuche zukünftig zu reduzieren oder sie irgendwann auch ganz zu ersetzen.

Markus Brakel | idw
Weitere Informationen:
http://dgzmk.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics