Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabiles Fundament für die biomedizinische Forschung

20.10.2004


Nach der ersten Analyse einer Rohfassung des menschlichen Genoms im Februar 2001 haben die 20 beteiligten Forschungszentren aus 6 Ländern den entscheidenden Schritt vollzogen. Sie veröffentlichen am 21. Oktober in der renommierten internationalen Fachzeitschrift NATURE einen Artikel zum Fertigstellen der Genomsequenz des Menschen. Damit stellen sie die biomedizinische Forschung der kommenden Jahrzehnte auf ein stabiles und verlässliches Fundament. Zu den Wissenschaftlern, die bei der Entzifferung des menschlichen Erbgutes mitwirken, gehören auch die Mitglieder des Deutschen Genomischen Sequenzanalyse-Konsortiums, die seit 1996 im Deutschen Humangenomprojekt (DHGP) und seit 2001 im Nationalen Genomforschungsnetz (NGFN) vom Bundesministerium für Bildung und Forschung (BMBF) gefördert werden.



Mehr als 99% der Gen-reichen ("euchromatischen") und damit für die allermeisten Lebensprozesse verantwortlichen Erbsubstanz des Menschen sind jetzt mit einer bisher unvorstellbar hohen Genauigkeit entziffert. Im Gegensatz zur Rohfassung aus dem Jahr 2001 mit etwa 150.000 Lücken sind die Sequenzen der 24 menschlichen Chromosomen jetzt nur noch an 341 Stellen unterbrochen. Diese Lücken liegen meist entweder in den für heutige Technologien unzugänglichen Gen-armen ("heterochromatischen") Bereichen, an den Chromosomenenden oder in sich vielfach wiederholenden, fast identischen Abschnitten. Die Forscher sind sich einig, dass auch weiterhin Anstrengungen unternommen werden müssen, um die noch vorhandenen Lücken zu schließen. Hierfür ist jedoch ein anderer Ansatz notwendig: weg von Hochdurchsatzverfahren und hin zu punktuell ausgerichteter und dem spezifischen Problem angepasster Analyse. Angesichts der wenigen Lücken stellt das menschliche Genom das bei weitem größte nahezu vollständig bestimmte Genom dar. Bisher liegen nur die Genome von drei weiteren Mehrzellern (Fruchtfliege, Fadenwurm, Ackerschmalwand), deren Genome alle bedeutend kleiner sind, in vergleichbarer Qualität vor.

... mehr zu:
»Biotechnologie »Gen »Genom »Sequenz


Anhand der nun vorliegenden hochgenauen Sequenz lassen sich grundsätzliche Fragen der Humangenetik mit deutlich höherer Genauigkeit beantworten. Zum Beispiel wird jetzt klar, dass der Mensch nur etwa 20 - 25.000 Protein-kodierende Gene hat und nicht 30 - 40.000, wie die Forscher ursprünglich noch im Jahr 2001 aus der Rohfassung des menschlichen Genoms folgerten. Der gravierende Unterschied zwischen Roh- und aktueller Sequenz wird auch daran deutlich, dass aus heutiger Sicht 58% aller Genvorhersagen von 2001 fehlerbehaftet waren. Als weitere Beispiele für Fragen, die bisher im Rauschen der Ungenauigkeiten der Rohfassungen untergingen, können die Forscher jetzt hochinteressante verdoppelte Bereiche sowie in jüngster Evolution ’geborene’ und ’gestorbene’ Gene bestimmen. Solche Analysen sind ein wesentlicher Bestandteil bei der Suche nach den genetischen Unterschieden von Mensch und Tier. Auch medizinisch hoch relevante Untersuchungen bauen auf der Sequenz des menschlichen Genoms auf. Anhand der nun vorliegenden nahezu vollständigen Sequenz können in Zukunft mit größter Sicherheit genetische Veränderungen, die komplexen Erkrankungen wie Krebs, Bluthochdruck, chronischen Entzündungen und Fettsucht zugrunde liegen, identifiziert werden.

Das Human-Genom-Projekt ist ein herausragendes Beispiel für den enormen Nutzen, der durch international koordinierte Anstrengungen zur Generierung von öffentlichen Forschungsressourcen erzielt werden kann.

Es ist besonders bemerkenswert, dass die drei beteiligten deutschen Gruppen in Jena (Institut für Molekulare Biotechnologie, IMB), Berlin (Max-Planck-Institut für Molekulare Genetik) und Braunschweig (Gesellschaft für Biotechnologische Forschung, GBF) zusammen mit japanischen Kollegen durch die schon im Mai 2000 in NATURE veröffentliche Analyse des Chromosoms 21 einen Qualitätsstandard gesetzt und damit das internationale Gesamtprojekt geprägt haben. Insgesamt hat das Deutsche Konsortium ca. 2,5% der jetzt verfügbaren finalen Daten erbracht, die sich auf die Chromosomen 3, 8, 9, 17, 21 und X verteilen. Neben vielen bisher unbekannten Genen konnten in enger Zusammenarbeit mit klinischen Partnern z.B. bereits 12 menschliche Krankheitsgene entdeckt werden, u.a. für Kleinwuchs, Nachtblindheit, geistige Behinderung, Nieren- und Hautkrankheiten.

Angesicht dieser Erfolge hofft das Konsortium, dass weitere fundamentale und im internationalen Rahmen vorangetriebene Projekte zur Säuger-Genom-Sequenzanalyse auch weiter von deutscher Seite unterstützt werden.

Anlässlich des Abschlusses ihrer Arbeiten im Rahmen des DHGP und der Publikation zum Fertigstellen des Human-Genoms kommen die drei beteiligten Gruppen am 20. und 21. Oktober in Jena zu ihrem letzten Konsortiumstreffen zusammen. Sie werden eine Leistungsbilanz ziehen sowie künftige Strategien und Projekte diskutieren.

Kontakt:

Dr. Matthias Platzer
Institut für Molekulare Biotechnologie (IMB)
Genomanalyse
Beutenbergstr. 11
07745 Jena
Tel: (03641) 65 6241
Fax: (03641) 65 6255
E-Mail: mplatzer@imb-jena.de

Prof. Dr. Hans Lehrach
Max-Planck-Institut für Molekulare Genetik (MPIMG)
Ihnestr. 73
14195 Berlin-Dahlem
Tel: (030) 8413 1220
Fax: (030) 8413 1380
E-Mail: lehrach@molgen.mpg.de

Dr. Helmut Blöcker
Gesellschaft für Biotechnologische Forschung (GBF)
Genomanalyse
Mascheroder Weg 1
38124 Braunschweig
Tel: (0531) 6181 220
Fax: (0531) 6181 292
E-Mail: bloecker@gbf.de

Manfred Braun | idw
Weitere Informationen:
http://www.gbf.de
http://www.imb-jena.de
http://www.mpg.de

Weitere Berichte zu: Biotechnologie Gen Genom Sequenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie