Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das menschliche Genom in bisher höchster Präzision

20.10.2004


Automatisierung im Humangenomprojekt. Roboter dieser Art bereiten die Proben für die eigentliche Sequenzierung vor. Jede der Platten enthält 384 Reaktionskammern, bei einem Durchlauf können in zweieinhalb bis drei Stunden zwölf Platten mit insgesamt 4.608 Proben bearbeitet werden.

Bild: Max-Planck-Institut für molekulare Genetik


Genaue Entschlüsselung der Gen-reichen Sequenzen des Humangenoms legt solides Fundament für künftige biomedizinische Forschung

... mehr zu:
»Biotechnologie »Gen »Genom »Sequenz

Nach einer ersten Rohfassung des menschlichen Genoms im Februar 2001 haben die 20 am Humangenom-Projekt beteiligten Forschungszentren aus sechs Ländern jetzt eine hochgenaue Version des menschlichen Erbguts in der Fachzeitschrift "Nature" veröffentlicht (Nature, 21. Oktober 2004). Diese zeigt beispielsweise, dass der Mensch nur über etwa 20.000 bis 25.000 und nicht 30.000 bis 40.000 Protein-kodierende Gene verfügt. An der Analyse beteiligt waren auch die Mitglieder des Deutschen Genomischen Sequenzanalyse-Konsortiums, die seit 1996 im Deutschen Humangenomprojekt (DHGP) und seit 2001 im Nationalen Genomforschungsnetz (NGFN) vom Bundesministerium für Bildung und Forschung (BMBF) gefördert werden. Anhand der nun vorliegenden nahezu vollständigen Sequenz können in Zukunft genetische Veränderungen, die komplexen Erkrankungen wie Krebs, Bluthochdruck, chronischen Entzündungen und Fettsucht zugrunde liegen, mit hoher Sicherheit identifiziert werden.

Mehr als 99 Prozent der Gen-reichen ("euchromatischen") und damit für die allermeisten Lebensprozesse verantwortlichen Erbsubstanz des Menschen sind jetzt mit einer bisher unvorstellbar hohen Genauigkeit entziffert. Im Gegensatz zur Rohfassung aus dem Jahr 2001 mit etwa 150.000 Lücken sind die Sequenzen der 24 menschlichen Chromosomen jetzt nur noch an 341 Stellen unterbrochen. Diese Lücken liegen meist entweder in den für heutige Technologien unzugänglichen Gen-armen ("heterochromatischen") Bereichen, an den Chromosomenenden oder in sich vielfach wiederholenden, fast identischen Abschnitten. Die Forscher sind sich einig, dass auch weiterhin Anstrengungen unternommen werden müssen, um die noch vorhandenen Lücken zu schließen. Hierfür ist jedoch ein anderes Vorgehen notwendig, weg von Hochdurchsatzverfahren und hin zu punktuell ausgerichteten und dem spezifischen Problem angepassten Analysen. Angesichts der wenigen Lücken stellt das menschliche Genom das bei weitem größte nahezu vollständig bestimmte Genom dar. In vergleichbarer Qualität liegen bisher nur die Genome von drei weiteren Mehrzellern (Fruchtfliege, Fadenwurm, Ackerschmalwand) vor, deren Genome allerdings bedeutend kleiner sind.


Anhand der nun vorliegenden hochgenauen Sequenz lassen sich grundsätzliche Fragen der Humangenetik mit deutlich höherer Genauigkeit als bisher beantworten. So verfügt der Mensch nur über etwa 20.000 bis 25.000 Protein-kodierende Gene und nicht 30.000 bis 40.000, wie die Forscher ursprünglich noch im Jahr 2001 aus der Rohfassung des menschlichen Genoms gefolgert hatten. Der gravierende Unterschied zwischen Roh- und aktueller Sequenz wird auch daran deutlich, dass aus heutiger Sicht 58 Prozent aller Genvorhersagen von 2001 fehlerbehaftet waren. Die Forscher können jetzt auch hochinteressante verdoppelte Bereiche im Genom sowie erst in der jüngeren Evolution ‚geborene’ und ‚gestorbene’ Gene bestimmen. Solche Analysen sind wesentlicher Bestandteil bei der Suche nach den genetischen Unterschieden von Mensch und Tier. Auch medizinisch hoch relevante Untersuchungen bauen auf der Sequenz des menschlichen Genoms auf.

Das Human-Genom-Projekt ist ein herausragendes Beispiel für den enormen Nutzen, der durch international koordinierte Anstrengungen zur Generierung von öffentlichen Forschungsressourcen erzielt werden kann.

Es ist besonders bemerkenswert, dass die drei beteiligten deutschen Gruppen in Jena (Institut für Molekulare Biotechnologie, IMB), Berlin (Max-Planck-Institut für molekulare Genetik) und Braunschweig (Gesellschaft für Biotechnologische Forschung, GBF) zusammen mit japanischen Kollegen durch die schon im Mai 2000 in NATURE veröffentliche Analyse des Chromosoms 21 einen Qualitätsstandard gesetzt und damit das internationale Gesamtprojekt geprägt haben. Insgesamt hat das Deutsche Konsortium ca. 2,5 Prozent der jetzt verfügbaren finalen Daten erbracht, die sich auf die Chromosomen 3, 8, 9, 17, 21 und X verteilen. Neben vielen bisher unbekannten Genen konnten in enger Zusammenarbeit mit klinischen Partnern z.B. bereits 12 menschliche Krankheitsgene entdeckt werden, u.a. für Kleinwuchs, Nachtblindheit, geistige Behinderung sowie für Nieren- und Hautkrankheiten.

Angesichts dieser Erfolge hofft das Konsortium, dass weitere fundamentale und im internationalen Rahmen vorangetriebene Projekte zur Säuger-Genom-Sequenzanalyse auch weiter von deutscher Seite unterstützt werden.

Anlässlich des Abschlusses ihrer Arbeiten im Rahmen des DHGP und der Publikation zum Fertigstellen des Human-Genoms kommen die drei beteiligten Gruppen am 20. und 21. Oktober in Jena zu ihrem letzten Konsortiumstreffen zusammen. Sie werden eine Leistungsbilanz ziehen sowie künftige Strategien und Projekte diskutieren.

Originalveröffentlichung:

International Human Genome Sequencing Consortium
Finishing the euchromatic sequence of the human genome
Nature, 21 October 2004

Weitere Informationen erhalten Sie von:

Dr. Matthias Platzer
Institut für Molekulare Biotechnologie (IMB), Jena
Tel.: 03641 65-6241
Fax: 03641 65-6255
E-Mail: mplatzer@imb-jena.de

Prof. Hans Lehrach
Max-Planck-Institut für molekulare Genetik, Berlin
Tel.: 030 8413-1220
Fax: 030 8413-1380
E-Mail: lehrach@molgen.mpg.de

Dr. Helmut Blöcker
Gesellschaft für Biotechnologische Forschung (GBF), Braunschweig
Tel.: 0531 6181-220
Fax: 0531 6181-292
E-Mail: bloecker@gbf.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.molgen.mpg.de
http://www.imb-jena.de
http://www.gbf.de

Weitere Berichte zu: Biotechnologie Gen Genom Sequenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie