Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Japan ruft

19.10.2004


Beispiel eines Funktionsmaterials: Die Funktionseinheit, ein Polyoxometallat-Cluster (Preyssler Anion), entsteht durch die spontane Zusammenlagerung von molekularen Untereinheiten. Integriert in einen dünnen Film zwischen zwei durchsichtigen Elektroden entsteht ein Fenster, das durch Anlegen einer elektrischen Spannung die Farbe von transparent nach tief blau wechseln kann. Solche schaltbaren Fenster könnten Anwendung in der Architektur oder als Sonnendach in der Automobilindustrie finden. Der Aufbau geschieht ausschließlich in wässriger Lösung bei Raumtemperatur, ist ohne Nebenverbindungen und damit ausgesprochen umweltfreundlich.

Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Unterzeichnung des Memorandum of Understanding (MOU), von links nach rechts: Dr. Kamo (Vice President), Dr. Ichinose (Director), Dr. Watanabe (Director General), Prof. Möhwald (Director, MPI), Dr. Dirk G. Kurth (MPI).

Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Max-Planck-Wissenschaftler wird erster ausländischer Direktor am renommierten National Institute for Materials Science in Tsukuba/Japan


Mit einem Etat von etwa 2 Millionen Euro entsteht in den nächsten drei Jahren unter Leitung von Dr. Dirk G. Kurth aus dem Potsdamer Max-Planck-Institut für Kolloid- und Grenzflächenforschung eine Selbständige Forschergruppe am National Institute for Materials Science (NIMS) in Tsukuba, Japan. Damit wird erstmals ein deutscher Nachwuchswissenschaftler als Direktor an dieses Institut berufen. Gemeinsames Ziel aller Arbeitsgruppen und wissenschaftlichen Einrichtungen beider Institute ist die Entwicklung neuer, intelligenter Materialien.

Japan hat sich in den vergangenen Jahrzehnten mehr und mehr den wissenschaftlichen Herausforderungen der Zukunft geöffnet und gewährt inzwischen auch ausländischen Forschern den Zutritt zu seinen Hochtechnologieschmieden. Einen entscheidenden Anteil daran haben die stetig wachsende Vielseitigkeit wissenschaftlicher Fragestellungen sowie die Verheißungen der Nanotechnologie. Auf diese Weise werden neue, interdisziplinär und international ausgerichtete Lösungsansätze entwickelt, die über die traditionellen Ansätze natur- und ingenieurwissenschaftlicher Disziplinen weit hinausgehen.


In diese Entwicklung ist auch die 2004 ins Leben gerufene Kooperation des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung (MPI-KG) in Potsdam und des National Institute for Materials Science (NIMS) in Tsukuba einzuordnen. Erstmals wird ein deutscher Nachwuchswissenschaftler als Direktor am NIMS berufen. Daneben wird Dr. Dirk G. Kurth seine Arbeitsgruppe am Potsdamer Max-Planck-Institut weiterführen und auf diese Weise für einen regen Gedankenaustausch zwischen beiden Instituten sorgen.

Mit der Berufung des ersten ausländischen Direktors ans Advanced Materials Laboratory (AML) baut das NIMS seinen Bereich Chemische Materialwissenschaften aus. Ein Schwerpunkt der Forschung ist die Entwicklung intelligenter Materialien, d. h. von Materialien, deren Struktur oder Funktion gezielt verändert werden können. Die Herstellung der Materialien folgt dabei Prinzipien, wie sie auch in der Natur Anwendung finden. Ähnlich wie beim Aufbau mit Lego-Bausteinen werden molekulare Bausteine (Module) zu einer integrierten Funktionseinheit zusammengelagert. Im Unterschied zu Lego-Bausätzen entstehen diese Materialien jedoch von selbst, ohne äußeres Dazutun. Da die eingesetzten Komponenten molekulare Dimensionen aufweisen, kann man die Zielstrukturen mit höchster Präzision aufbauen.

Die Module kann man unabhängig voneinander entwickeln und herstellen, und dann als ein integriertes Ganzes, eben als Funktionseinheit oder Funktionsmaterial, zusammenfügen. Die Modularität dieses Ansatzes bietet ein Höchstmaß an Kontrolle über Struktur und Funktion des Materials und einen unübertroffenen Grad an Vielfalt, Flexibilität und synthetischer Einfachheit. Aus diesen Gründen wird dem Selbstaufbau eine große Rolle in der Verwirklichung der nächsten Generation von nanoskaligen Materialien zugeschrieben.

Tsukuba, auch Science City genannt, liegt 50 Kilometer nordöstlich von Tokio und beherbergt zahlreiche Institute und universitäre Einrichtungen. Das NIMS entstand hier 2001 aus der Zusammenlegung der Institute für Metallforschung und für Anorganische Materialien im Rahmen der wissenschaftlichen Umstrukturierung der japanischen Forschungslandschaft. Mit einem Etat von 21 Bill. Yen (160 Mill. Euro) und etwa 1.500 Beschäftigten wird hier auf allen aktuellen Bereichen der Materialforschung gearbeitet, angefangen bei Biomaterialien, Hochtemperatur- und Verbundwerkstoffen, Nanotechnologie und optischen Werkstoffen über Quantenmaterialien, Photonik und Supraleitern bis hin zu Umwelt- und Sicherheitstechnologien. Zu den Missionen des NIMS gehört neben der Grundlagenforschung die Verbreitung wissenschaftlicher Entwicklungen sowie deren marktwirtschaftlicher Umsetzung, der Austausch von Wissenschaftlern mit in- und ausländischen Instituten sowie die Ausbildung des Forschungsnachwuchses.

2003 hat das neu errichtete International Center for Young Scientists (ICYS) seine Pforten für Nachwuchswissenschaftler aus aller Welt geöffnet. Die Philosophie dieses Programms beinhaltet die finanzielle und wissenschaftliche Autonomie der jungen Forscher sowie die Zusammenführung verschiedener Fachrichtungen. So entsteht eine einzigartige international und interdisziplinär geprägte Atmosphäre für kreatives Arbeiten. Nicht selbstverständlich ist auch der Gebrauch des Englischen als Institutssprache. Neu ist auch der Studienzweig "Materials Science and Engineering" gemeinsam mit der University of Tsukuba.

Weitere Informationen erhalten Sie von:

PD Dr. Dirk G. Kurth
Max-Planck-Institut für Kolloid-
und Grenzflächenforschung, Potsdam
Tel.: 0331 567-9211, Fax: -9202
E-Mail: kurth@mpikg-golm.mpg.de

Director Functional Modules Group
National Institute for Materials Science (NIMS), Tsukuba/Japan
Tel.: +81 29 860-4742, Fax: +81 29 852-7449
E-Mail: Dirk.Kurth@momokusa.nims.go.jp

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpikg-golm.mpg.de

Weitere Berichte zu: Grenzflächenforschung Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie