Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forscher machen "Drähte" im Gehirn sichtbar

18.10.2004


Neue Methode zur Entschlüsselung neuronaler Schaltkreise aus dem Max-Planck-Institut für medizinische Forschung


Rekonstruktion von "Nervendrähten" unter Verwendung eines dreidimensionalen Bilderstapels, der mit der SBFSEM-Technik gewonnen wurde. Gezeigt sind auch Original-Bildausschnitte, auf denen die zwischen den Drähten gefundenen synaptischen Verbindungen zu sehen sind. Blau gezeichnet ist ein Hauptdendrit, ein baumartig verzweigtes System von Nervenzellfortsätzen, das Eingangssignale von den Synapsen einsammelt, grün ein dendritischer Seitenast. Bei den anderen Fortsätzen handelt es sich um Axone, Nervenzellfortsätze, die eine elektrische Erregung, oft über erhebliche Distanzen, weiterleiten und dann via Synapsen auf die Dendriten anderer Zellen übertragen.

Bild: Max-Planck-Institut für medizinische Forschung



Wissenschaftler am Max-Planck Institut für medizinische Forschung haben eine neue Methode entwickelt, um die "Verdrahtung" des Gehirns zu entschlüsseln und damit den Informationsfluss beim Denken zu verfolgen. Das von Winfried Denk und Heinz Horstmann entwickelte Gerät erlaubt es, automatisch dreidimensionale Bilder von biologischen Geweben zu erstellen, und das mit einer Auflösung, bei der man auch die dünnsten Ausläufer von Nervenzellen verfolgen kann. Diese Ausläufer sind die "Drähte" des Gehirns, mit Hilfe derer auch weit voneinander entfernte Nervenzellen miteinander Signale austauchen können. Da diese Nervenfortsätze oft weniger als einen zehntausendstel Millimeter (100 Nanometer) im Durchmesser sind, was deutlich unter der optischen Auflösungsgrenze liegt, können sie im Lichtmikroskop nicht verfolgt werden, besonders wenn sie - wie fast überall im Gehirn - dicht gepackt vorliegen (PloS Biology, 19. Oktober 2004).



Um die nötige Auflösung zu erzielen, haben die Max-Planck-Forscher ein Elektronenmikroskop verwendet und dieses - und das ist das Neue an der Methode - mit einem in der Probenkammer montierten Mikrotom kombiniert, einem Apparat, der sehr dünne Gewebeschnitte herstellt. Das Mikrotom schneidet etwa 50 Nanometer dicke Scheibchen von einem Plastikblock ab, in dem das zu untersuchende Gehirngewebe eingebettet ist. Nach jedem Schnitt macht das Elektronenmikroskop ein Bild der Schnittfläche. Dieser Vorgang kann beliebig oft wiederholt und auch automatisiert werden. Auf diese Weise entsteht ein digitaler Bilderstapel und damit ein dreidimensionales Abbild der Gewebeprobe. In diesem kann man selbst dünnste Nervenfortsätze erkennen und in drei Dimensionen verfolgen (vgl. Abb.).

Diese Methode, von den Autoren "Serielle Rasterelektronenmikroskopie der Blockoberfläche" (serial block-face scanning electron microscopy, SBFSEM) genannt, unterscheidet sich von bisher zur Beobachtung von biologische Proben verwendeten Verfahren zum einen dadurch, dass man zur Abbildung nicht Elektronen nutzt, die durch den dünnen Gewebeschitt hindurch scheinen (Durchlichtelektronenmikroskopie, transmission electron microscopy, TEM), sondern jene, die von der Oberfläche des Gewebeblocks zurückgeworfen werden. Hinzu kommt als zweiter wesentlicher Unterschied das in die Vakuumkammer des Elektronenmikroskops montierte Mikrotom.

Da konventionelle Mikrotome aus verschiedenen Gründen dafür nicht geeignet sind, haben die Autoren ein spezielles Mikrotom entwickelt, in dem sich insbesondere die Probe während des Schneidevorgangs nicht bewegt. Dies ist deshalb wichtig, da einer der Hauptvorteile der SBFSEM-Methode darin besteht, dass die Aufnahmen im Bilderstapel sehr gut überlappen, was das Verfolgen von neuronalen Fortsätzen erheblich erleichtert. Hingegen sind Ungenauigkeiten bei der Überlappung und Verzerrungen beim Schnittverzerrungen die Hauptprobleme bei der konventionellen Serienschnitt-Elektronenmikroskopie und müssen dort manuell korrigiert werden. Das macht die Aufnahme von großen Gewebebereichen praktisch unmöglich, während die Max-Planck-Forscher ohne weiteres Bilderstapel mit 2.000 Bildern mit SBFSEM aufnehmen können.

Die Wissenschaftler erwarten, dass neue Färbetechniken und automatischen Bilderkennungsmethoden es in Zukunft ermöglichen werden, Nervenfortsätze in SBFSEM-Bilderstapeln in großem Stil zu verfolgen. Während Wissenschaftler am Max-Planck Institut für medizinische Forschung speziell an der Entschlüsselung neuronaler Schaltkreise interessiert sind, dürfte die neue Technik zur Herstellung dreidimensionaler Gewebeaufnahmen auch in anderen Bereichen der Biologie sowie in der diagnostischen Medizin auf erhebliches Interesse stoßen.

Originalveröffentlichung:

Winfried Denk; Heinz Horstmann
Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure
PloS Biology, 19 October 2004

Weitere Informationen erhalten Sie von:

Prof. Winfried Denk
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: 06221 486-335
Fax: 06221 486-325
E-Mail: denk@mpimf-heidelberg.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimf-heidelberg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Quantenkommunikation: Wie man das Rauschen überlistet

29.03.2017 | Physik Astronomie

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE