Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forscher machen "Drähte" im Gehirn sichtbar

18.10.2004


Neue Methode zur Entschlüsselung neuronaler Schaltkreise aus dem Max-Planck-Institut für medizinische Forschung


Rekonstruktion von "Nervendrähten" unter Verwendung eines dreidimensionalen Bilderstapels, der mit der SBFSEM-Technik gewonnen wurde. Gezeigt sind auch Original-Bildausschnitte, auf denen die zwischen den Drähten gefundenen synaptischen Verbindungen zu sehen sind. Blau gezeichnet ist ein Hauptdendrit, ein baumartig verzweigtes System von Nervenzellfortsätzen, das Eingangssignale von den Synapsen einsammelt, grün ein dendritischer Seitenast. Bei den anderen Fortsätzen handelt es sich um Axone, Nervenzellfortsätze, die eine elektrische Erregung, oft über erhebliche Distanzen, weiterleiten und dann via Synapsen auf die Dendriten anderer Zellen übertragen.

Bild: Max-Planck-Institut für medizinische Forschung



Wissenschaftler am Max-Planck Institut für medizinische Forschung haben eine neue Methode entwickelt, um die "Verdrahtung" des Gehirns zu entschlüsseln und damit den Informationsfluss beim Denken zu verfolgen. Das von Winfried Denk und Heinz Horstmann entwickelte Gerät erlaubt es, automatisch dreidimensionale Bilder von biologischen Geweben zu erstellen, und das mit einer Auflösung, bei der man auch die dünnsten Ausläufer von Nervenzellen verfolgen kann. Diese Ausläufer sind die "Drähte" des Gehirns, mit Hilfe derer auch weit voneinander entfernte Nervenzellen miteinander Signale austauchen können. Da diese Nervenfortsätze oft weniger als einen zehntausendstel Millimeter (100 Nanometer) im Durchmesser sind, was deutlich unter der optischen Auflösungsgrenze liegt, können sie im Lichtmikroskop nicht verfolgt werden, besonders wenn sie - wie fast überall im Gehirn - dicht gepackt vorliegen (PloS Biology, 19. Oktober 2004).



Um die nötige Auflösung zu erzielen, haben die Max-Planck-Forscher ein Elektronenmikroskop verwendet und dieses - und das ist das Neue an der Methode - mit einem in der Probenkammer montierten Mikrotom kombiniert, einem Apparat, der sehr dünne Gewebeschnitte herstellt. Das Mikrotom schneidet etwa 50 Nanometer dicke Scheibchen von einem Plastikblock ab, in dem das zu untersuchende Gehirngewebe eingebettet ist. Nach jedem Schnitt macht das Elektronenmikroskop ein Bild der Schnittfläche. Dieser Vorgang kann beliebig oft wiederholt und auch automatisiert werden. Auf diese Weise entsteht ein digitaler Bilderstapel und damit ein dreidimensionales Abbild der Gewebeprobe. In diesem kann man selbst dünnste Nervenfortsätze erkennen und in drei Dimensionen verfolgen (vgl. Abb.).

Diese Methode, von den Autoren "Serielle Rasterelektronenmikroskopie der Blockoberfläche" (serial block-face scanning electron microscopy, SBFSEM) genannt, unterscheidet sich von bisher zur Beobachtung von biologische Proben verwendeten Verfahren zum einen dadurch, dass man zur Abbildung nicht Elektronen nutzt, die durch den dünnen Gewebeschitt hindurch scheinen (Durchlichtelektronenmikroskopie, transmission electron microscopy, TEM), sondern jene, die von der Oberfläche des Gewebeblocks zurückgeworfen werden. Hinzu kommt als zweiter wesentlicher Unterschied das in die Vakuumkammer des Elektronenmikroskops montierte Mikrotom.

Da konventionelle Mikrotome aus verschiedenen Gründen dafür nicht geeignet sind, haben die Autoren ein spezielles Mikrotom entwickelt, in dem sich insbesondere die Probe während des Schneidevorgangs nicht bewegt. Dies ist deshalb wichtig, da einer der Hauptvorteile der SBFSEM-Methode darin besteht, dass die Aufnahmen im Bilderstapel sehr gut überlappen, was das Verfolgen von neuronalen Fortsätzen erheblich erleichtert. Hingegen sind Ungenauigkeiten bei der Überlappung und Verzerrungen beim Schnittverzerrungen die Hauptprobleme bei der konventionellen Serienschnitt-Elektronenmikroskopie und müssen dort manuell korrigiert werden. Das macht die Aufnahme von großen Gewebebereichen praktisch unmöglich, während die Max-Planck-Forscher ohne weiteres Bilderstapel mit 2.000 Bildern mit SBFSEM aufnehmen können.

Die Wissenschaftler erwarten, dass neue Färbetechniken und automatischen Bilderkennungsmethoden es in Zukunft ermöglichen werden, Nervenfortsätze in SBFSEM-Bilderstapeln in großem Stil zu verfolgen. Während Wissenschaftler am Max-Planck Institut für medizinische Forschung speziell an der Entschlüsselung neuronaler Schaltkreise interessiert sind, dürfte die neue Technik zur Herstellung dreidimensionaler Gewebeaufnahmen auch in anderen Bereichen der Biologie sowie in der diagnostischen Medizin auf erhebliches Interesse stoßen.

Originalveröffentlichung:

Winfried Denk; Heinz Horstmann
Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure
PloS Biology, 19 October 2004

Weitere Informationen erhalten Sie von:

Prof. Winfried Denk
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: 06221 486-335
Fax: 06221 486-325
E-Mail: denk@mpimf-heidelberg.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimf-heidelberg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie