Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Kannenpflanze bringt Insekten mit Aquaplaning zu Fall

15.10.2004


Die Kannenpflanze Nepenthes bicalcarata an ihrem natürlichen Standort. Das Bild wurde auf Borneo geschossen. Foto: Holger Bohn


Chronologie eines Absturzes: Eine Weberameise läuft auf dem Rand einer Kanne entlang, verliert den Halt und stürzt ins Innere der Falle. Dort wird sie später verdaut. Aufnahmen: Holger Bohn


Forscher vom Würzburger Biozentrum berichten in PNAS


Bei tropischen Kannenpflanzen dienen die Blätter dazu, Insekten zu fangen und dann zu verdauen. Wie genau werden die exotischen Gewächse ihrer Beute habhaft? Dafür hatte die Wissenschaft bislang mehrere Erklärungen zu bieten. Forscher vom Biozentrum der Uni Würzburg haben jetzt herausgefunden, welche Fangvorrichtungen für den Jagderfolg der Pflanze am wichtigsten sind.

Die Fallen des Tropengewächses bestehen aus Blättern, die zu länglichen Kannen umgeformt sind und an deren Rand süßer Nektar produziert wird. Das lockt die Insekten an. Sie laufen dann auf dem Kannenrand umher und fallen schließlich in den Behälter. Von dort gibt es kein Entrinnen mehr. Liegt die Beute schließlich entkräftet am Grund der Kanne, wird sie von Enzymen zersetzt - so entsteht eine Art Zusatzfutter für die Pflanze, die an nährstoffarmen Stellen wächst.


Warum aber fallen die Insekten in die Kanne hinein? Liegt es an den sehr rutschigen Wachsoberflächen an den Innenwänden der Kanne? Oder betäubt die Pflanze ihre Beute mit Alkaloiden? Nur zum Teil, meinen die Würzburger Biologen Holger Bohn und Walter Federle. Sie sind davon überzeugt, den wichtigsten, bisher völlig übersehenen Fangmechanismus entdeckt zu haben: Demzufolge schnappt die Kannenpflanze ihre Opfer mit speziellen Oberflächenstrukturen, auf denen die Haftorgane der Insekten Aquaplaning machen.

Wie die Forscher in der US-Fachzeitschrift PNAS berichten, weist der Kannenrand eine regelmäßige Mikrostruktur aus radial verlaufenden Rillen auf. Die selbst sind wiederum treppenartig aufgebaut, die Stufen fallen zum Inneren der Kanne hin ab. Im Gegensatz zu fast allen anderen Pflanzenoberflächen ist diese Oberfläche komplett benetzbar, entweder mit Regenwasser oder mit dem Nektar, der am Rand der Kanne produziert wird. Sie ist darum oft mit einem dünnen Flüssigkeitsfilm überzogen - für Insekten kommt das einer Rutschbahn gleich.

Wie ausgeklügelt das System tatsächlich ist, haben Bohn und Federle mit Weberameisen (Oecophylla smaragdina) gezeigt. Diese Tiere besitzen an den Füßen zwei unterschiedliche Vorrichtungen, mit denen sie sich auf fast allen Oberflächen festhalten können. Da sind zum einen mit Flüssigkeit gefüllte Haftkissen, eines pro Fuß. Sie sondern einen hauchdünnen Sekretfilm ab und ermöglichen es der Ameise, selbst auf perfekt glatten Oberflächen so gut Halt zu finden, dass sie dabei noch mehr als das Hundertfache ihres eigenen Körpergewichts als Zusatzlast tragen können. Hinzu kommen an jedem Fuß zwei Krallen, die der Anheftung an rauen Oberflächen dienen.

Die Kannenpflanze Nepenthes bicalcarata schafft es, beide Haftmechanismen gleichzeitig wirkungslos zu machen. Indem sie den Rand ihrer Falle mit Wasser benetzt hält, nimmt sie den Haftkissen jegliche Wirkung. Und die speziell strukturierte Oberfläche sorgt dafür, dass die Krallen der Ameisen nur in einer Richtung Halt finden. Die Tiere können zwar in die Kanne hineinlaufen, aber nicht mehr aus ihr entkommen.

Der Aquaplaning-Mechanismus bringt es mit sich, dass die Ameisen auf unbefeuchteten Kannenrändern ohne Probleme laufen können. Bei trockenem Wetter ernten sie daher unbehelligt den Kannennektar. Sobald der Rand aber von Wasser benetzt ist, kann die Kanne viele Ameisen "auf einen Streich" fangen.

Eine zusätzliche Beobachtung machten die Biologen bei Nepenthes alata, einer Kannenpflanze mit Wachsplättchen auf der Innenwand. Diese Pflanze fing bei Trockenheit zwar wesentlich mehr Ameisen als ihre Verwandte Nepenthes bicalcarata. Ist ihr Kannenrand aber feucht, dann arbeitet die Falle deutlich effektiver. Damit scheint das Aquaplaning ein Effekt zu sein, den vermutlich alle Kannenpflanzen nutzen.

Holger Bohn und Walter Federle: "Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface", PNAS Vol. 101, Nr. 39, 28. September 2004, Seiten 14138-14143.

Weitere Informationen: Dr. Walter Federle, T (0931) 888-4321, Fax (0931) 888-4309, E-Mail: wfederle@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.zv.uni-wuerzburg.de/studentenkanzlei/
http://www.zv.uni-wuerzburg.de

Weitere Berichte zu: Ameise Aquaplaning Insekt Kannenpflanze Pflanze

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht JUMP-1 – ein magnetisches Polymer aus Jena
28.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise