Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnisse des Hörens entschlüsselt

14.10.2004


Protein TRPA1 ist für normales Hören entscheidend



Ein Team der Harvard Medical School hat ein Protein tief im Ohr entdeckt, das entscheidend für normales Hören zuständig ist. Seit Jahrzehnten versuchen Wissenschafter herauszufinden, wie Töne in jene Nervenimpulse verwandelt werden, die das Gehirn auswertet. Entscheidend soll das Protein TRPA1 sein, das sich an den Spitzen der Haarzellen des Innenohres befindet. Bei der Untersuchung von Mäuseembryos zeigte sich, dass das Auftreten von TRPA1 während der Entwicklung mit der Fähigkeit der Haarzellen Vibrationen wahrzunehmen zusammenfiel. Es wird angenommen, dass das Protein Poren bildet, die sich synchron mit den Schallwellen öffnen und schließen. Damit wird ermöglicht, dass Ionen wie Natrium und Kalzium in die Zellen gelangen und die Vibrationen in elektrische Signale verwandeln können. Die Ergebnisse der Studie wurden in Nature veröffentlicht.

... mehr zu:
»Haarzelle »Innenohr »Protein »TRPA1 »Vibration


Es war nicht bekannt, wie die mikroskopisch kleinen haarähnlichen Strukturen des Innenohres die Schallwellen in elektrische Signale umwandeln, die an das Gehirn weitergegeben werden. Experten hatten vermutet, dass an diesem Vorgang eine Art von Pore oder Kanal beteiligt ist, der der elektrischen Ladung ermöglicht, in die Zellen zu gelangen, die die Haare tragen. Das Team um David Corey geht jetzt davon aus, dass das Protein TRPA1 bei diesem Vorgang eine entscheidende Rolle spielt. Die Wissenschaftler erforschten die Rolle und Position des Proteins bei Mäusen und Zebrafischen. Es zeigte sich laut BBC, dass TRPA1 sich an den Spitzen der Haarzellen des Innenohres befindet. Ohne dieses Protein waren Zellen nicht länger in der Lage, elektrische Signale als Reaktion auf die Vibration zu erzeugen.

Es ist bereits bekannt, dass für das Hören Schallwellen den Gehörgang entlang bis zum Trommelfell gelangen und es zum Vibrieren bringen. Dieses Vibrieren versetzt drei kleine Knochen hinter dem Trommelfell, die Gehörknöchelchen, in Bewegung. Diese Knöchelchen geben die Vibrationen an eine dünne Gewebeschicht am Eingang zum Innenohr, an das ovale Fenster weiter. Die Bewegung dieses Fensters führt in der Folge zu wellenähnlichen Bewegungen in der Cochlea. Diese Innenohrschnecke enthält Tausende von winzigen Haarzellen, die mit Nerven in Verbindung stehen, die die Impulse an das Gehirn weitergeben, das die Töne interpretiert.

Michaela Monschein | pressetext.austria
Weitere Informationen:
http://hms.harvard.edu/hms/home.asp
http://www.nature.com

Weitere Berichte zu: Haarzelle Innenohr Protein TRPA1 Vibration

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rasche Umweltveränderungen begünstigen Artensterben
19.10.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik