Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnisse des Hörens entschlüsselt

14.10.2004


Protein TRPA1 ist für normales Hören entscheidend



Ein Team der Harvard Medical School hat ein Protein tief im Ohr entdeckt, das entscheidend für normales Hören zuständig ist. Seit Jahrzehnten versuchen Wissenschafter herauszufinden, wie Töne in jene Nervenimpulse verwandelt werden, die das Gehirn auswertet. Entscheidend soll das Protein TRPA1 sein, das sich an den Spitzen der Haarzellen des Innenohres befindet. Bei der Untersuchung von Mäuseembryos zeigte sich, dass das Auftreten von TRPA1 während der Entwicklung mit der Fähigkeit der Haarzellen Vibrationen wahrzunehmen zusammenfiel. Es wird angenommen, dass das Protein Poren bildet, die sich synchron mit den Schallwellen öffnen und schließen. Damit wird ermöglicht, dass Ionen wie Natrium und Kalzium in die Zellen gelangen und die Vibrationen in elektrische Signale verwandeln können. Die Ergebnisse der Studie wurden in Nature veröffentlicht.

... mehr zu:
»Haarzelle »Innenohr »Protein »TRPA1 »Vibration


Es war nicht bekannt, wie die mikroskopisch kleinen haarähnlichen Strukturen des Innenohres die Schallwellen in elektrische Signale umwandeln, die an das Gehirn weitergegeben werden. Experten hatten vermutet, dass an diesem Vorgang eine Art von Pore oder Kanal beteiligt ist, der der elektrischen Ladung ermöglicht, in die Zellen zu gelangen, die die Haare tragen. Das Team um David Corey geht jetzt davon aus, dass das Protein TRPA1 bei diesem Vorgang eine entscheidende Rolle spielt. Die Wissenschaftler erforschten die Rolle und Position des Proteins bei Mäusen und Zebrafischen. Es zeigte sich laut BBC, dass TRPA1 sich an den Spitzen der Haarzellen des Innenohres befindet. Ohne dieses Protein waren Zellen nicht länger in der Lage, elektrische Signale als Reaktion auf die Vibration zu erzeugen.

Es ist bereits bekannt, dass für das Hören Schallwellen den Gehörgang entlang bis zum Trommelfell gelangen und es zum Vibrieren bringen. Dieses Vibrieren versetzt drei kleine Knochen hinter dem Trommelfell, die Gehörknöchelchen, in Bewegung. Diese Knöchelchen geben die Vibrationen an eine dünne Gewebeschicht am Eingang zum Innenohr, an das ovale Fenster weiter. Die Bewegung dieses Fensters führt in der Folge zu wellenähnlichen Bewegungen in der Cochlea. Diese Innenohrschnecke enthält Tausende von winzigen Haarzellen, die mit Nerven in Verbindung stehen, die die Impulse an das Gehirn weitergeben, das die Töne interpretiert.

Michaela Monschein | pressetext.austria
Weitere Informationen:
http://hms.harvard.edu/hms/home.asp
http://www.nature.com

Weitere Berichte zu: Haarzelle Innenohr Protein TRPA1 Vibration

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise