Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Delfin mit guter Mathe-Note - RUB-Forscherin entdeckt ungewöhnliche Lateralisierung

29.09.2004


Delfin beim Mathetest - Noah kann Mengen und Muster unterscheiden


Noah, der Große Tümmler des Tiergartens Nürnberg, kann Mathe.



Gute Noten in Mathematik bescheinigt Annette Kilian (RUB-Fakultät für Psychologie) ihrem Schüler Noah: Der Große Tümmler des Tiergartens Nürnberg, der für ihre Dissertation "Funktionelle cerebrale Asymmetrien visueller Prozesse und numerische Fähigkeiten beim Großen Tümmler (Tursiops truncatus)" (Betreuer: Prof. Dr. Onur Güntürkün) die Schulbank drückte, kann unterschiedlich große Mengen unterscheiden und nach ihrer Größe sortieren. Dabei nutzt er hauptsächlich seine linke Gehirnhälfte - anders als der Mensch, bei dem eher die rechte Gehirnhälfte für non-verbale numerische Aufgaben zuständig ist.

... mehr zu:
»Delfin »Gehirnhälfte »Hirnhälfte


Wenn 2 kleiner 3, dann 1 kleiner 2

"Echtes Zählen" findet man zwar nur beim Menschen. Dennoch haben viele Tiere, vor allem Wirbeltiere, grundlegende numerische Fähigkeiten, wie zum Beispiel die Unterscheidung von Mengen. Delfin Noah konnte aus zwei verschiedenen Anzahlen, die ihm auf großen schwarzen Tafeln unter Wasser dargeboten wurden, immer die kleinere wählen, nachdem er gelernt hatte, dass es dafür eine Belohnung gab. Die Auswahl der kleineren Menge gelang ihm unabhängig von Größe, Form und anderen Merkmalen auf den Tafeln. Außerdem konnte er auch neue Anzahlen in die richtige Reihenfolge bringen (ordinale Beziehungen herstellen): Er wählte spontan immer die kleinere Anzahl, auch wenn er sie zuvor nicht kannte, konnte also etwa von 2 kleiner 3 schließen, dass auch 1 kleiner 2 ist.

Delfine haben eine mentale Anzahlskala

"Dieses Erstellen von ordinalen Beziehungen weist auf eine mentale Repräsentation dieser Kategorien und damit auf das Vorhandensein einer mentalen Anzahlskala hin, die Delfine wahrscheinlich bei der Erfassung ihrer Umwelt einsetzen", so Annette Kilian. Die Fähigkeit, Mengen zu ordnen, zeigt sich beim Menschen erst im frühen Kleinkindalter; sie ist Voraussetzung zum späteren Zählen. Dass der Delfin und andere Tierarten darüber verfügen, macht uns deutlich, dass die evolutionären Wurzeln unseres numerischen Wissens bereits bei Tieren zu finden sind", so die Forscherin.

Arbeitsteilung der Hirnhälften

Die evolutionäre Entwicklung der Wale und Delfine (Cetacea) trennte sich von der an Land lebender Säugetiere schon vor etwa 60 Millionen Jahren. "Die Anpassung an den Lebensraum im Wasser hatte viele anatomische und physiologische Veränderungen zur Folge, die auch die Struktur des Gehirns betreffen", erläutert Annette Kilian. Beim Menschen sind Unterschiede zwischen der rechten und linken Gehirnhälfte seit langem bekannt. So ist beispielsweise die linke Hirnhemisphäre bei den meisten Menschen im Vorteil, wenn es um sprachliche Aufgaben geht. In den letzten Jahrzehnten zeigte eine Vielzahl von Untersuchungen an unterschiedlichen Wirbeltierarten, dass es auch bei Tieren funktionelle Asymmetrien zwischen den Hirnhälften gibt. Auch bei Delfinen vermutete man sie, vor allem beim Sehen.

Delfine "ticken anders"

Um diese Vermutung zu prüfen, deckte Annette Kilian dem Delfin vorübergehend je ein Auge ab und bot ihm dann visuelle Reize dar. Auf Grund der Kreuzung der optischen Nerven erreicht die visuelle Information eines Auges primär die entgegengesetzte Hirnhälfte. Der Delfin erreichte bei numerischen Aufgaben mit dem rechten Auge signifikant bessere Leistungen als mit dem linken Auge, was auf einen Vorteil der linken Hirnhälfte bei dieser Aufgabe hinweist. Beim Menschen ist das umgekehrt: Wir können mit der rechten Hirnhälfte besser solche numerischen Reize verarbeiten. Auch bei der räumlichen Orientierung kam der Delfin bei geöffnetem rechten Auge besser klar, auch hier dominiert also die linke Hirnhälfte. "Delfine sind offensichtlich anders lateralisiert sind als verwandte Tierarten. Dies ist ungewöhnlich, da man z.B. unter den Säugetieren für einige Funktionen recht ähnliche Lateralisationsmuster findet", so Annette Kilian. Dies lege die Vermutung nahe, dass die funktionelle Gehirnstruktur bei Delfinen im Laufe ihrer Evolution drastische Veränderungen erfahren hat, die zu solchen Abweichungen führten.

Weitere Informationen

Annette Kilian
Tiergarten Nürnberg
Am Tiergarten 30, 90480 Nürnberg
Tel. 0911/5454 854
E-Mail: AnnetteKilian@gmx.de

Dr. Josef König | idw

Weitere Berichte zu: Delfin Gehirnhälfte Hirnhälfte

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie