Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wildarten können Genpool von Kulturpflanzen erweitern

17.09.2004


Sechs Wochen alte Pflanzen von verschiedenen Wildtomaten-Arten.
Bild: Max-Planck-Institut für molekulare Pflanzenphysiologie


Deutsch-israelische Forschergruppe hat Genbaustein entdeckt, der den Zuckergehalt in Tomaten steuert


Mit Kreuzungen zwischen verschiedenen Arten von Wildtomaten und einer Kulturtomatenart ist es Wissenschaftlern um Professor Dani Zamir von der Hebräischen Universität Jerusalem/Israel und Dr. Alisdair Fernie vom Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam gelungen, nicht nur den Chromosomenabschnitt zu erkennen, der den Zuckergehalt in Tomaten beeinflusst, sondern auch das verantwortliche Gen und sogar einen einzigen Bausteins dieses Gens zu identifizieren, der eine erhöhte Aktivität des Genprodukts, ein Zucker-spaltendes Enzym, bewirkt (Science, 17. September 2004).

Die Entwicklung neuer Pflanzensorten wird durch die geringer werdende genetische Variabilität innerhalb der existierenden Kulturpflanzen zunehmend erschwert. Das genetische Material der Kulturpflanzen kann zwar durch Kreuzungen und Selektion neu kombiniert werden, doch die Gesamtheit des in einer Art vorhandenen Erbguts (Genpool) wird dadurch nicht erweitert. Deshalb erhofft man sich von der Nutzung der natürlichen Vielfalt, wie sie Wildarten aufweisen, eine erhebliche Erweiterung des Genpools von Kulturpflanzen. Dies belegen Untersuchungen, die Professor Dani Zamir an der Hebräischen Universität von Jerusalem und seine Mitarbeiter an Tomaten durchführt haben. Hierbei stellte sich heraus, dass das Einkreuzen von Erbgut aus Wildarten in bestehende Kulturarten einerseits zu höheren Erträgen führt, sich andererseits aber auch qualitativer Merkmale veränderten, wie der Anteil an löslichen Zuckern, also Glucose und Fructose, der zum Beispiel wichtig ist für die Ketchupherstellung.


Allerdings werden die Eigenschaften von Organismen nicht nur durch ein einziges Gen, sondern durch eine Vielzahl von Genen beeinflusst. Diese haben in ihrer Gesamtheit dann die Ausprägung eines Merkmales zur Folge. Anhand genetischer Analysen von Nachkommen aus Kreuzungen kann man nun jene Abschnitte des Erbgutes identifizieren, die in Zusammenhang mit der Ausprägung eines bestimmten Merkmals stehen. Doch diese Abschnitte sind in der Regel noch sehr groß und können viele Gene beinhalten. Durch gezieltes weiteres Kreuzen ist es jedoch möglich, diese Abschnitte immer weiter einzugrenzen, bis eine Größenordnung erreicht ist, die es erlaubt, einzelne Gene zu identifizieren.

In den Arbeitsgruppen um Dr. Alisdair Fernie in Potsdam und Professor Dani Zamir in Jerusalem wurden nun Untersuchungen angestellt, um in vier verschiedenen Wildtomatenarten und einer Kulturtomate jene erblichen Komponenten zu identifizieren, die den Gehalt an Glucose und Fructose beeinflussen. Hierzu verwendeten die Forscher spezielle Kreuzungen zwischen den Wildtomatenarten und der Kulturtomate. Diese Kreuzungen tragen das Erbgut der Kulturtomate, in das kleine Stücke des Wildarterbgutes, nämlich kurze Abschnitte der Chromosomen, integriert sind. Für jede einzelne Pflanze der Kreuzungsnachkommenschaft ist bekannt, an welcher Stelle im Erbgut ein Chromosomenstück aus der Wildart einen entsprechenden Abschnitt der Kulturtomate ersetzt. Die Früchte dieser Pflanzen haben die Wissenschaftler dann auf ihren Gehalt an löslichen Komponenten - zum größten Teil Glucose und Fructose - analysiert. Anschließend haben die Forscher den Zuckergehalt in den Früchten mit der unterschiedlichen genetischen Zusammensetzung der einzelnen Pflanzen kombiniert Auf diese Weise konnten sie eine Reihe von Chromosomenstücken aus Wildarten identifizieren, die den Zuckergehalt in den Früchten erhöhen.

In den meisten Fällen war Erbgut aus der Wildart Solanum pennellii, eine in den Peruanischen Anden beheimatete Art mit kleinen grünen Beeren als Frucht, ausschlaggebend für einen erhöhten Zuckeranteil. Bereits in früheren Arbeiten hatten die Wissenschaftler das Gen isoliert, das sich innerhalb des Chromosomenstücks aus S. pennellii befindet. Das Produkt dieses Gens ist eine Invertase, ein Enzym, das die Spaltung von Saccharose in ihre Grundbausteine Glucose und Fructose bewirkt. Jetzt haben die Wissenschaftler den Wirkungsmechanismus dieses Enzyms genauer untersucht und mit gleichen Enzym aus den anderen drei Wildarten und der kultivierten Art verglichen. Hierbei unterschied sich die Aktivität der Invertase-Gene zwischen den Wildarten und der Kulturtomate nicht, und auch in der Menge des Genproduktes, also des Enzyms selber, waren keine Unterschiede feststellbar. Deshalb blieb nur, die Aktivität des Enzyms selbst zu messen. Hierbei stellte sich heraus, dass die Aktivität der Invertase aus S. pennellii höher ist als jene der Invertasen aus den anderen Tomatenarten.

Enzyme bestehen aus Aminosäuren, deren Reihenfolge über die Gensequenz bestimmt wird. Der Vergleich der Aminosäuresequenzen der Invertase-Enzyme aller untersuchten Tomatenarten zeigte, dass nur in der S. pennellii-Invertase eine Aminosäure ausgetauscht war, jedoch nicht in den Invertasen der anderen Arten. Daraus schlossen die Wissenschaftler, daß es sich hierbei um eine Veränderung in der Gensequenz handelt, die die Aktivität des Enzyms aus S. pennellii erhöht. Interessanterweise weisen auch die Aminosäuresequenzen der Invertasen aus anderen Pflanzenarten, wie Kartoffel, Tabak, Möhre, Mais oder Weizen, dieselbe Sequenzänderung auf wie in S. pennelli.

Um die Funktion der Invertasen aus S. pennellii sowie aus der Kulturtomate genauer zu untersuchen, nutzten die Forscher Hefezellen. Denn auch Hefen verfügen über Invertasen, die Saccharose in Glucose und Fructose spalten, damit dieses Kohlenhydrat in die Hefezelle aufgenommen und dort verwertet werden kann. Die Forscher nutzten Hefemutanten, deren eigene Invertase inaktiviert wurde. Deshalb sind die Mutanten nicht mehr in der Lage, Saccharose als Kohlenstoffquelle zu verwerten. Folglich wachsen sie nicht auf einem Nährboden, der ausschließlich Saccharose als Energiequelle enthält. In diese Hefemutanten brachten die Forscher das Invertase-Gen aus der Kulturtomate bzw. aus der Wildart S. pennellii ein, sodass die transformierten Hefezellen die jeweilige Tomaten-Invertase bildeten. Um den zuvor erkannten Aminosäureunterschied der S. pennellii-Invertase direkt untersuchen zu können, tauschten die Wissenschaftler die entsprechende ursprüngliche Aminosäure der Kulturtomaten-Invertase durch die veränderte Aminosäure aus. Auch dieses veränderte Invertase-Gen wurde in Hefemutanten eingebracht.

Durch Messung der Wachstumsrate der transformierten Hefezellen, die auf einem saccharosehaltigen Nährboden wuchsen, wurden die drei unterschiedlichen Invertasen miteinander verglichen. Hierbei zeigten Hefezellen, die die S. pennellii-Invertase oder die veränderte Kulturtomaten-Invertase bildeten, ein normales Wachstum. Hingegen waren Hefezellen, die mit dem ursprünglichen Invertase-Gen aus der Kulturtomate transformiert wurden, in ihrem Wachstum stark gehemmt. Auch die in diesen Hefezellen gemessenen Enzymaktivitäten spiegelten das beobachtete Wachstumsverhalten der Zellen wieder: Aktivitäten der S. pennellii- und der veränderten Kulturtomaten-Invertase waren ähnlich hoch wie die Invertase-Aktivitäten anderer Pflanzen. Hingegen war die Aktivität der unveränderten Invertase aus der Kulturtomate signifikant niedriger. Das gehemmte Wachstum der Hefemutanten, die das unveränderte Invertase-Gen aus der Kulturtomate trugen, ist folglich auf ihre Unfähigkeit zurückzuführen, Saccharose in ausreichender Menge zu verwerten, und das wiederum aufgrund der geringen Aktivität des saccharosespaltenden Enzyms Invertase.

Damit ist bewiesen, welche grundsätzliche funktionale Bedeutung dieser Aminosäureveränderung in der Invertase aus der Tomatenwildart S. pennellii zukommt, die auf dem Austausch eines einzigen Bausteins in der Sequenz des Invertase-Gens , einer so genannten Punktmutation beruht.

Diese Arbeit wurde von der Max-Planck-Gesellschaft und im Rahmen des Agreement on German-Israeli Project Cooperation (DIP) gefördert.

Originalveröffentlichung:

Eyal Friedman, Fernando Carrari, Yong-Sheng Liu, Alisdair R. Fernie, Dani Zamir
Zooming In on a Quantitative Trait Nucleotide for Tomato Yield Using Wild Species Introgression Lines, Science, 17 September 2004

Weitere Informationen erhalten Sie von:

Dr. Alisdair R. Fernie
Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam
Tel.: 0331 567-8211
Fax: 0331 567-8250
E-Mail: fernie@mpimp-golm.mpg.de

Dr. Fernando Carrari
Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam
Tel.: 0331 567-8312
Fax: 0331 567-8250
E-Mail: carrari@mpimp-golm.mpg.de

Prof. Dr. Dani Zamir
Hebräische Universität von Jerusalem, Rehovot, Israel, Jerusalem/Israel
Tel.: 00972 8 9489092
E-Mail: zamir@agri.huji.ac.il

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimp-golm.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kleinstmagnete für zukünftige Datenspeicher
30.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europaweite Studie zu „Smart Engineering“

30.03.2017 | Studien Analysen

Forschungsprojekt: Zukünftige Fahrzeugtechnologien im Open Region Lab – ZuFOR

30.03.2017 | Informationstechnologie

Die Zerschneidung der Tropenwälder steigert den Ausstoß von Treibhausgasen um weiteres Drittel

30.03.2017 | Ökologie Umwelt- Naturschutz