Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Uhren - robust und sensibel zugleich

09.09.2004


Erkenntnisse über die Steuerung des biologischen Tagesrhythmus können zu besserem Verständnis menschlicher Krankheiten führen, berichtet deutsch-amerikanisches Forscherteam


Die genetischen Regelkreise der biologischen Uhr sind bei der Fruchtfliege analog zu denen beim Menschen aufgebaut: Sie bestehen aus zwei Rückkopplungsschleifen, die ähnlich wie Thermostate funktionieren und konkret die Produkte der Gene "per" und tim" regeln: Steigt die Konzentration eines Genprodukts über dem Sollwert, wird die Produktion des entsprechenden Proteins ausgeschaltet, und umgekehrt.
Bild: Max-Planck-Institut für Dynamik komplexer technischer Systeme



Unsere biologische Uhr, der zirkadiane Rhythmus, wird beim Reisen über mehrere Zeitzonen hinweg durcheinander gebracht, aber der Körper gewöhnt sich sehr schnell an den neuen Tag-Nacht-Rhythmus. Anhand der biologischen Uhr der Fruchtfliege gelang es jetzt Wissenschaftlern des Max-Planck-Instituts für Dynamik komplexer technischer Systeme in Magdeburg und des Institute for Collaborative Biotechnologies der University of California in Santa Barbara/USA, mit Hilfe von Computermodellen die Ursachen für das Zusammenspiel zwischen Robustheit und Sensitivität der inneren Uhr genauer zu identifizieren. Diese Studien können zu einem vertieften Verständnis des "Jet Lag" sowie menschlicher Krankheiten beitragen, sie erlauben aber auch generellere Einblicke in den "Sinn" der Komplexität zellulärer Regelkreise. Ihre Ergebnisse haben die Wissenschaftler in der aktuellen Ausgabe von Proceedings of the National Academy of Sciences USA (PNAS, 7. September 2004) veröffentlicht.



Die biologische Uhr im Menschen wie auch in einfacheren Organismen dient dazu, das Verhalten an den Tag-Nacht-Rhythmus anpassen zu können. Alltagserfahrungen wie neuere Studien mit Computermodellen der internen Uhr zeigen, dass diese sich häufig robust verhält, also nicht leicht gestört werden kann. Dabei besteht auf molekularer Ebene die Herausforderung an das Design der Uhr darin, zuverlässig ein komplexes dynamisches Verhalten (Oszillationen der Konzentrationen von Genprodukten) zu erzeugen, das zudem durch Licht mit der Außenwelt synchronisiert werden kann, um beispielsweise die Periodenlänge der Uhr an die jahreszeitlich unterschiedliche Tagesdauer anzupassen.

Für Studien des zirkadianen Rhythmen nutzen Wissenschaftler häufig die Fruchtfliege, da die zugrunde liegenden genetischen Regelkreise analog zu denen beim Menschen aufgebaut sind. Im Kern bestehen diese aus zwei negativen Rückkopplungsschleifen (siehe Abb.), die ähnlich wie Thermostate funktionieren: Liegt die Konzentration eines Genprodukts (Temperatur) über dem Sollwert, wird die Produktion des entsprechenden Proteins (die Heizung) ausgeschaltet, und umgekehrt. In der zirkadianen Uhr führt die Zeitverzögerung zwischen der Aktivierung der Gene "per" und "tim" und dem Auftauchen der Proteine Per und Tim zu den beobachteten Oszillationen. Doch es ist weitgehend ungeklärt, warum die Uhr eigentlich über zwei parallele Regelkreise verfügt. Denn im Prinzip würde ein einziger Regelkreis für die Generierung eines Rhythmus ausreichen; die "unnötige" Komplexität der Uhr ist demnach erklärungsbedürftig.

Ausgangspunkt des aktuellen Forschungsprojekts zwischen Wissenschaftlern aus Santa Barbara und Magdeburg war nun die Hypothese, dass die komplizierte Architektur der Regelkreise für die Robustheit des Systems notwendig ist. Um dies zu überprüfen, untersuchten sie mit systemwissenschaftlichen Methoden anhand von Computermodellen, wie störanfällig alternative Architekturen der zirkadianen Uhr entweder mit einer oder zwei Rückkopplungsschleifen sind. Dabei stellten die Wissenschaftler fest, dass im Wesentlichen die Netzwerkarchitekturen - weitgehend unabhängig davon, wie das Verhalten der modellierten Regelkreise aussah - die Stellen bestimmte, an denen die Modelle empfindlich bzw. robust auf Störungen reagierten. Dies erlaubte zum Beispiel Vorhersagen über bestimmte Klassen von sensitiven Regulationsmechanismen, die auch bei menschlichen Krankheiten mit Rhythmusstörungen eine besondere Rolle spielen. Die vergleichende Untersuchung der Modelle zeigte anschließend, dass die Komplexität der "realen" zirkadianen Uhr nicht einfach mit Robustheit gegenüber allen möglichen Störungen begründet werden kann. Vielmehr scheinen die zwei verschalteten Regelkreise die Präzision und Einstellbarkeit der Uhr bei "normalen" Störungen individueller Regulationsmechanismen zu fördern, wohingegen eine komplexere Struktur die Anfälligkeit gegenüber seltenen (komplizierten) Störungen erhöht.

Die Wissenschaftler fanden zudem Hinweise darauf, dass biologische Zellen das in der Technik häufig verwendete Prinzip der hierarchischen Regelungsstruktur benutzen, um einen optimalen Kompromiss zwischen Robustheit und (unvermeidbarer) Sensitivität zu erreichen. Dabei werden die Sensitivitäten an einer zentralen Stelle konzentriert, wodurch die individuellen Funktionen robuster werden, aber bei gezielten Attacken auf die wenigen zentralen Komponenten eine Katastrophe eintritt. In der Technik wird dieses Prinzip zum Beispiel für das Design von Kampfflugzeugen verwendet, bei denen die sensibelsten elektronischen Komponenten direkt unter dem Pilotensitz installiert sind, anstelle über das gesamte Flugzeug verteilt zu werden. Für die zirkadiane Uhr zeigten die jetzt publizierten Untersuchungen, dass die komplexe Struktur der "realen" Uhr sich genau dieses Prinzip zu Nutze macht, um ihre Robustheit insgesamt zu erhöhen. Eine leicht unterschiedliche Struktur des Regelkreises könnte allerdings die Sensitivität unter bestimmten Bedingungen verringern, so dass die beteiligten Wissenschaftler weitergehende Untersuchungen unter "lebensnaheren" Bedingungen planen.

Generell können die in Kooperation zwischen Magdeburg und Santa Barbara erzielten Ergebnisse zu einem tieferen Verständnis der Komplexität lebender Zellen verhelfen. Die neuen Erkenntnisse können zudem für die Untersuchung und Beeinflussung biologischer Rhythmen genutzt werden, da diese z.B. die Identifikation viel versprechender Ziele für neuartige Medikamente erlauben, auch unabhängig von kleineren Variationen zwischen den zu behandelnden Individuen.

Weitere Informationen erhalten Sie von:

Dr. Jörg Stelling
Max-Planck-Institut für Dynamik
komplexer technischer Systeme, Magdeburg
Tel.: 0391 6110-475
Fax: 0391 6110-503
E-Mail: stelling@mpi-magdeburg.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-magdeburg.mpg.de

Weitere Berichte zu: Computermodell Komplexität Regelkreis

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise