Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spermium sorgt für erste Ordnung im Embryo

08.09.2004


Die erste Körperachse im Wurms C. elegans wird bereits im einzelligen Embryo definiert. Die vordere Hemisphäre (im Diagramm rot) wird zur Außenseite des Wurms; die hintere Region (im Diagramm blau und mit einem fluoreszierenden Protein markiert) zur Innenseite. Bild: Max-Planck-Institut für molekulare Zellbiologie und Genetik


Die hintere Domäne im C. elegans-Embryo verbreitet sich von der Position des Zentrosoms aus, dem schmalen, mit roten Pfeilen markierten Punkt. Die Grenzen der expandierenden Domäne sind mit blauen Pfeilspitzen gekennzeichnet (linke Bildreihe). Wird das Zentrosom zerstört, ("x" in der rechten Reihe), bildet sich die hintere Domäne nicht aus. Bild: Max-Planck-Institut für molekulare Zellbiologie und Genetik


Der Zentrosom-Komplex des Spermiums löst auf bisher unbekannte Weise die Bildung der ersten Körperachse im Embryo aus, berichten Dresdner Max-Planck-Forscher


Die rechtzeitige räumliche Organisation des Körpers ist für viele Lebewesen wichtige Voraussetzung für die korrekte Entwicklung von Geweben und Organen. Beim Fadenwurm C. elegans polarisiert sich die befruchtete Eizelle sehr rasch nach der Befruchtung in einen Vorder- und Hinterpol entlang einer ersten Körperachse. Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden haben jetzt herausgefunden, dass bei der Herausbildung der beiden Hemisphären das Zentrosom eine entscheidende Rolle spielt - und zwar unabhängig von seiner Rolle als Organisator der Mikrotubuli. Vom Zentrosom kommt das Startsignal für die räumliche Organisation des Embryos, ein möglicherweise schon sehr früh in der Evolution konservierter, bei vielen Arten bestehender Mechanismus (Nature, 2. September 2004).

Was legt bei Tieren fest, wo der Kopf- und der Schwanzteil entsteht? Die Ausbildung der Körperachsen ist ein fundamentales Problem in der Entwicklungsbiologie. Die Entscheidungen dazu werden früh im tierischen Embryo getroffen, doch auf welche Weise zum Beispiel die vordere und die hintere Hemisphäre definiert werden, ist weiterhin unbekannt. Der kleine Fadenwurm C. elegans hat in den vergangenen 20 Jahren eine Reihe von neuen Erkenntnissen dazu geliefert, wie sich die Körperachsen ausbilden. So wird die erste Achse noch im einzelligen Embryo festgelegt, etwa 30 Minuten nach der Befruchtung, wenn sich zwei unterschiedliche Bereiche herauszubilden beginnen. Diese bilden dann die beiden Hemisphären des ovalen Embryos und bestimmen die zukünftige Entwicklung des Wurminneren bzw. -äußeren.

Doch eine wichtige Frage blieb bisher unbeantwortet, nämlich wodurch die Achse spezifiziert wird, an der entlang sich die Bereiche ausbilden. Man weiß inzwischen, dass das Spermium eine wichtige Rolle in diesem Prozess spielt, da der Ort der Befruchtung ganz spezifisch mit der Position einer der beiden Domänen übereinstimmt. Das Sperma des Wurms ist relativ einfach aufgebaut und trägt zwei für die Entwicklung des Embryos bedeutsame Teile bei: den Zellkern und damit die väterlichen Gene, und das Zentrosom, eine zierliche Fass-ähnliche Struktur, die später dazu dient, die meisten der Bestandteile in der Zelle zu organisieren. Da sich bei Mutanten, denen der Kern des Spermiums fehlt, die Vorder-Hinter-Achse normal ausbildet, vermutet man, dass das Zentrosom der Hautbeitrag des Spermiums zur räumlichen Organisation des Embryos ist.

Carrie Cowan und Tony Hyman vom Max-Planck-Institut für molekulare Zellbiologie und Genetik haben diese Vermutung nun direkt getestet. Sie benutzten einen genau definierten Laserstrahl, um das Zentrosom zu zerstören, bevor sich die Körperachsen im einzelligen Embryo von C. elegans ausbilden konnten. In diesem Fall bildeten sich die Achsen gar nicht aus und die Zelle zeigte typische Eigenschaften nur einer der Domänen, nämlich des Vorderpols.

Als die Forscher im Embryo des Wurms in Echtzeit beobachteten, wie sich die Domänen herausbilden, wurde klar, dass sich die hintere Domäne normalerweise von der Stelle aus entwickelt, wo sich eigentlich das Zentrosom in der Zelle befindet. Die Wissenschaftler zerstörten daraufhin mit Laser-Ablation das Zentrosom während und nach der Ausbildung der hinteren Domäne. Doch das Fehlen des Zentrosoms hatte keinerlei Wirkungen auf die Ausbreitung bzw. den Erhalt der beiden Domänen. Folglich scheint die Herausbildung der ersten Körperachse durch ein vorübergehendes räumliches Signal diktiert zu werden, das vom Zentrosom ausgeht.

Bisher ist das Zentrosom bekannt als das Organisationszentrum des Mikrotubuli-Netzwerkes (Spindelapparat) in der Zelle, und die Mikrotubuli-Spindeln organisieren wiederum die meisten der Zellbestandteile. Die Forscher testeten nun, ob diese Funktion tatsächlich für die Ausbildung der beiden Domänen erforderlich ist. Doch die genetische bzw. chemische Eliminierung der Mikrotubuli aus dem einzelligen Embryo von C. elegans hatte keinerlei Auswirkung auf die Ausbildung der Körperachse. Die Funktion des Zentrosoms in der Entwicklung der Körperachsen scheint also unabhängig zu sein von seiner sonstigen Rolle als Organisationszentrum der Mikrotubuli. Das bedeutet, dass Zentrosome über eine von den Mikrotubuli unabhängige Funktion verfügen, räumliche Signale abzugeben, die Zellen dazu bringen, funktional unterschiedliche Regionen zu bilden.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Embryo Körperachse Körperachsen Spermium Zelle Zentrosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie