Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spermium sorgt für erste Ordnung im Embryo

08.09.2004


Die erste Körperachse im Wurms C. elegans wird bereits im einzelligen Embryo definiert. Die vordere Hemisphäre (im Diagramm rot) wird zur Außenseite des Wurms; die hintere Region (im Diagramm blau und mit einem fluoreszierenden Protein markiert) zur Innenseite. Bild: Max-Planck-Institut für molekulare Zellbiologie und Genetik


Die hintere Domäne im C. elegans-Embryo verbreitet sich von der Position des Zentrosoms aus, dem schmalen, mit roten Pfeilen markierten Punkt. Die Grenzen der expandierenden Domäne sind mit blauen Pfeilspitzen gekennzeichnet (linke Bildreihe). Wird das Zentrosom zerstört, ("x" in der rechten Reihe), bildet sich die hintere Domäne nicht aus. Bild: Max-Planck-Institut für molekulare Zellbiologie und Genetik


Der Zentrosom-Komplex des Spermiums löst auf bisher unbekannte Weise die Bildung der ersten Körperachse im Embryo aus, berichten Dresdner Max-Planck-Forscher


Die rechtzeitige räumliche Organisation des Körpers ist für viele Lebewesen wichtige Voraussetzung für die korrekte Entwicklung von Geweben und Organen. Beim Fadenwurm C. elegans polarisiert sich die befruchtete Eizelle sehr rasch nach der Befruchtung in einen Vorder- und Hinterpol entlang einer ersten Körperachse. Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden haben jetzt herausgefunden, dass bei der Herausbildung der beiden Hemisphären das Zentrosom eine entscheidende Rolle spielt - und zwar unabhängig von seiner Rolle als Organisator der Mikrotubuli. Vom Zentrosom kommt das Startsignal für die räumliche Organisation des Embryos, ein möglicherweise schon sehr früh in der Evolution konservierter, bei vielen Arten bestehender Mechanismus (Nature, 2. September 2004).

Was legt bei Tieren fest, wo der Kopf- und der Schwanzteil entsteht? Die Ausbildung der Körperachsen ist ein fundamentales Problem in der Entwicklungsbiologie. Die Entscheidungen dazu werden früh im tierischen Embryo getroffen, doch auf welche Weise zum Beispiel die vordere und die hintere Hemisphäre definiert werden, ist weiterhin unbekannt. Der kleine Fadenwurm C. elegans hat in den vergangenen 20 Jahren eine Reihe von neuen Erkenntnissen dazu geliefert, wie sich die Körperachsen ausbilden. So wird die erste Achse noch im einzelligen Embryo festgelegt, etwa 30 Minuten nach der Befruchtung, wenn sich zwei unterschiedliche Bereiche herauszubilden beginnen. Diese bilden dann die beiden Hemisphären des ovalen Embryos und bestimmen die zukünftige Entwicklung des Wurminneren bzw. -äußeren.

Doch eine wichtige Frage blieb bisher unbeantwortet, nämlich wodurch die Achse spezifiziert wird, an der entlang sich die Bereiche ausbilden. Man weiß inzwischen, dass das Spermium eine wichtige Rolle in diesem Prozess spielt, da der Ort der Befruchtung ganz spezifisch mit der Position einer der beiden Domänen übereinstimmt. Das Sperma des Wurms ist relativ einfach aufgebaut und trägt zwei für die Entwicklung des Embryos bedeutsame Teile bei: den Zellkern und damit die väterlichen Gene, und das Zentrosom, eine zierliche Fass-ähnliche Struktur, die später dazu dient, die meisten der Bestandteile in der Zelle zu organisieren. Da sich bei Mutanten, denen der Kern des Spermiums fehlt, die Vorder-Hinter-Achse normal ausbildet, vermutet man, dass das Zentrosom der Hautbeitrag des Spermiums zur räumlichen Organisation des Embryos ist.

Carrie Cowan und Tony Hyman vom Max-Planck-Institut für molekulare Zellbiologie und Genetik haben diese Vermutung nun direkt getestet. Sie benutzten einen genau definierten Laserstrahl, um das Zentrosom zu zerstören, bevor sich die Körperachsen im einzelligen Embryo von C. elegans ausbilden konnten. In diesem Fall bildeten sich die Achsen gar nicht aus und die Zelle zeigte typische Eigenschaften nur einer der Domänen, nämlich des Vorderpols.

Als die Forscher im Embryo des Wurms in Echtzeit beobachteten, wie sich die Domänen herausbilden, wurde klar, dass sich die hintere Domäne normalerweise von der Stelle aus entwickelt, wo sich eigentlich das Zentrosom in der Zelle befindet. Die Wissenschaftler zerstörten daraufhin mit Laser-Ablation das Zentrosom während und nach der Ausbildung der hinteren Domäne. Doch das Fehlen des Zentrosoms hatte keinerlei Wirkungen auf die Ausbreitung bzw. den Erhalt der beiden Domänen. Folglich scheint die Herausbildung der ersten Körperachse durch ein vorübergehendes räumliches Signal diktiert zu werden, das vom Zentrosom ausgeht.

Bisher ist das Zentrosom bekannt als das Organisationszentrum des Mikrotubuli-Netzwerkes (Spindelapparat) in der Zelle, und die Mikrotubuli-Spindeln organisieren wiederum die meisten der Zellbestandteile. Die Forscher testeten nun, ob diese Funktion tatsächlich für die Ausbildung der beiden Domänen erforderlich ist. Doch die genetische bzw. chemische Eliminierung der Mikrotubuli aus dem einzelligen Embryo von C. elegans hatte keinerlei Auswirkung auf die Ausbildung der Körperachse. Die Funktion des Zentrosoms in der Entwicklung der Körperachsen scheint also unabhängig zu sein von seiner sonstigen Rolle als Organisationszentrum der Mikrotubuli. Das bedeutet, dass Zentrosome über eine von den Mikrotubuli unabhängige Funktion verfügen, räumliche Signale abzugeben, die Zellen dazu bringen, funktional unterschiedliche Regionen zu bilden.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Embryo Körperachse Körperachsen Spermium Zelle Zentrosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Faszien: Vernetzt von Kopf bis Fuß
23.01.2018 | Goethe-Universität Frankfurt am Main

nachricht Flattern, wo der Pfeffer wächst
23.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

Die Flugerprobung des Airbus A320neo

23.01.2018 | Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

23.01.2018 | Physik Astronomie

Neue Formeln zur Erforschung der Altersstruktur nicht-linearer dynamischer Systeme

23.01.2018 | Interdisziplinäre Forschung

Dreifachblockade am Glioblastom

23.01.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics