Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entfernung von Stickoxiden aus Dieselabgasen

27.08.2004


Im Ergebnis eines Verbundprojektes, das von der high throughput experimentation company (hte) koordiniert und vom Bundesministerium für Bildung und Forschung (BMBF) gefördert wird, gelang es Leipziger Chemikern, Stickoxide aus Dieselabgasen zu entfernen. Damit konnte ein Beitrag zum Schutz der Umwelt geleistet werden.



251.000 Euro standen dem Institut für Technische Chemie der Universität Leipzig, das von Prof. Helmut Papp geleitet wird, für ihre Arbeiten zur Schadstoffreduzierung von Dieselabgasen zur Verfügung. Die Gesamtfördersumme des Verbundprojektes, an dem Partner aus Wissenschaft und Industrie beteiligt sind, betrug 3,5 Millionen Euro. Der Arbeitsgruppe um Prof. Papp gelang es, mit einem neuartigen Verfahren, Stickoxide aus Dieselabgasen zu entfernen. Stickoxide sind als Atemgifte, Verursacher des sauren Regens und als Ozonbildner eine Gefährdung für die Umwelt.



Das im Rahmen des Kompetenznetzwerkes für Katalyse (ConNeCat), das an der Gesellschaft für Chemische Technik und Biotechnologie e.V. (DECHEMA) angesiedelt ist, strukturierte sog. Leuchtturmprojekt sollte in einem multidisziplinären Ansatz neue Materialien und Verfahren zur katalytischen Entfernung von Stickoxiden (NOx) und Rußpartikeln aus Dieselabgasen entwickeln. Die Wissenschaftler um Prof. Papp präparierten rhodiumhaltige Katalysatoren mit speziellen Gelen bzw. Mikroemulsionen. Die untersuchten Katalysatoren wurden in unterschiedlichen Zuständen untersucht.

Mit dem TAP2-Reaktor-System (Temporal Analysis of Products) wurde zunächst der Mechanismus der Stickoxid-Zersetzung im Temperaturbereich von 100 bis 550°C untersucht. Der NO-Umsatz lag dabei über den gesamten Temperaturbereich mit über 90 Prozent sehr hoch. Dabei wurde umso mehr Stickstoff gebildet, je höher die Temperatur und der Bedeckungsgrad der Katalysatoroberflächen waren. Der Bedeckungsgrad ist abhängig von der Konzentration der Moleküle auf der rhodiumhaltigen Oberfläche des Katalysators.

Damit sich der gewünschte molekulare Stickstoff aus den dissoziativ adsorbierten NO-Molekülen bilden kann, werden zwei an der Oberfläche adsorbierte benachbarte Stickstoffatome benötigt, die Stickstoffmoleküle bilden können. Je mobiler die Stickstoffatome sind - und das werden sie, je höher die Temperatur ist - desto häufiger kommt es zur Kombination zu N2 und zur Desorption der Stickstoffmoleküle (N2). Ebenso ist mit steigendem Bedeckungsgrad der Oberfläche die Wahrscheinlichkeit, dass zwei Stickstoffatome benachbart sind, höher.

Die im Institut für Technische Chemie hergestellten Katalysatorproben wurden ergänzt durch Katalysatoren, die die high throughput experimentation company (hte) zur Verfügung stellte. Mit einer speziellen Apparatur (Steady State Transient Kinetic Analysis, kurz SSITKA-Apparatur genannt) wurden die Proben mit online MS-Analytik bei Temperaturen zwischen 100 und 400°C untersucht. Das Ergebnis: Ab 200°C wurden die Stickoxide vollständig umgesetzt und selektiv als Stickstoff desorbiert, unter der Vorausetzung das die Katalysatoren vorher mit Wasserstoff reduziert wurden. Bei abnehmendem NO-Umsatz, d.h. am fast vollständig oxidierten Katalysator, wurde die Bildung von Lachgas (N2O) beobachtet, d.h. der Katalysator war dann weitgehend unwirksam.

Mit ihren Untersuchungen leisteten die Leipziger Wissenschaftler einen Beitrag zum Umweltschutz. Das Projekt wird weitergeführt.

Weitere Informationen: Prof. Dr. Helmut Papp, Telefon: 0341 97-36300, E-Mail: papp@chemie.uni-leipzig.de

Randy Kühn | idw
Weitere Informationen:
http://techni.tachemie.uni-leipzig.de

Weitere Berichte zu: Dieselabgasen Katalysator Stickoxid Stickstoff Stickstoffatome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wie die Niere bei Wassermangel hochkonzentrierten Urin herstellt
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mitochondrien von Krebszellen im Visier

14.12.2017 | Biowissenschaften Chemie

Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor

14.12.2017 | Geowissenschaften

Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus

14.12.2017 | Förderungen Preise