Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilungsstopp für Tumorzellen

19.06.2001


Forschungszentrum Karlsruhe entschlüsselt Mechanismus zur Hemmung von Zellteilung

Woher wissen Zellen, wann sie sich teilen müssen und wann die Teilung angehalten werden muss? Im Forschungszentrum Karlsruhe ist ein molekularer "Schalter" gefunden worden, mit dem die Teilung von Zellen gestartet und wieder gestoppt werden kann. Die künstliche Aktivierung dieses Schalters könnte einen Weg zur Hemmung von Krebswachstum eröffnen. Das Verfahren wurde vom Forschungszentrum als Patent angemeldet.

Das hat jeder schon am eigenen Leib erfahren: Eine Wunde verheilt unter anderem dadurch, dass sich die umgebenden Zellen solange vermehren, bis die Verletzung geschlossen ist. Zellen vermehren sich, indem sie sich teilen. In der Zelle - genauer: im Zellkern - wird dazu ein genetisches Programm angeregt. Ob dieses Programm angeregt und wann es wieder beendet wird, hängt von einem komplizierten Gleichgewicht zwischen aktivierenden und hemmenden Prozessen in der Zelle ab. Bei der Entstehung von Krebs ist dieses Gleichgewicht gestört: Entweder sind die antreibenden Faktoren zu stark, oder die "Bremsen" fehlen.
"Wir haben einen Mechanismus entdeckt, wie eine solche Bremse für die Zellteilung von außerhalb der Zelle aktiviert werden kann", erläutert Professor Dr. Helmut Ponta vom Institut für Toxikologie und Genetik des Forschungszentrums Karlsruhe. "Ein Molekül namens CD44, das durch die Zellmembran hindurch, also vom Innern der Zelle nach außen reicht, kann erkennen, ob in der nächsten Nachbarschaft weitere Zellen liegen. Im Innern der Zelle wird dann ein anderes Molekül, es heißt Merlin, aktiviert. Wenn Merlin aktiviert ist, hört die Zelle auf, sich zu teilen."


CD44 ist ein Protein, das im Forschungszentrum schon seit längerem untersucht wird. So konnte nachgewiesen werden, dass es für die Metastasierung von Tumorzellen eine entscheidende Rolle spielt. Interessant ist nun, dass es unter bestimmten Umständen auch tumorhemmend wirken kann: Durch seinen molekularen Aufbau reicht es durch die Zellmembran hindurch und kann Signale von außen in die Zelle hinein vermitteln. So wird über CD44 vermittelt, ob die Zelle von anderen Zellen umgeben ist. Falls dies erkannt wird, aktiviert CD44 im Innern der Zelle das Molekül Merlin. Im aktivierten Zustand stoppt Merlin die Zellteilung.
"Damit haben wir einen Weg gefunden, über den ein Signal von außerhalb der Zelle einen Teilungsstopp bewirkt", so Ponta weiter. "Das eröffnet eine Möglichkeit, über die künstliche Aktivierung von Merlin auch die Teilung von Tumorzellen und damit das Wachstum von Tumoren zu verhindern."
Dieser Weg, über den durch Stimulation von außerhalb der Zelle die Zellteilung aufgehalten werden kann, wurde vom Forschungszentrum Karlsruhe zum Patent angemeldet. Die wissenschaftlichen Ergebnisse sind in der amerikanischen Fachzeitschrift "Genes und Development" (Vol. 15, S. 968 - 980, 2001) abgedruckt.

Wissenschaftlicher Hintergrund

Im Laufe eines Lebens findet in unserem Körper die unvorstellbar hohe Zahl von 10 Billiarden Zellteilungen statt. Jede einzelne wird mit großem Aufwand und höchster Präzision reguliert. In einer Zellkultur teilen sich normale Zellen solange, bis sie den Boden eines Gefäßes bedecken. Das Wachstum wird durch so genannte "Kontaktinhibition" beendet. Bei Tumorzellen funktioniert dies nicht: Die Zellen wachsen in die dritte Dimension weiter und füllen das ganze Gefäß aus. Dies kann auf Ebene der Zelle durch zwei Mechanismen ausgelöst werden, entweder durch Aktivierung von "Onkogenen", also Proteinen, die Krebsentstehung fördern, oder durch Deaktivierung von so genannten "Tumorsuppressorgenen", die Krebsentstehung behindern.


Ein solcher Tumorsuppressor ist das Gen Neurofibromatose 2 (NF2), beziehungsweise das durch NF2 codierte Protein namens Merlin. Das Gen NF2 ist benannt nach Neurofibromatose 2, einer Erbkrankheit, die unter anderem am Auftreten (gutartiger) Tumore im Gehirn (Schwanome) identifiziert werden kann. Die Krankheit entsteht durch einen Fehler im NF2-Gen auf Chromosom 22. Durch die Untersuchungen im Forschungszentrum konnte nun gezeigt werden, wie Merlin die Teilung von Zellen hemmt.
Dazu wird die Vermittlung des Proteins CD44 benötigt, das durch die Membran der Zellen reicht. Das eine Ende von CD44, das außerhalb der Zelle liegt, kann dort Bindegewebe erkennen; das sind Moleküle, die Zellen umgeben. Das Andocken von Bindegewebs-Substanzen an den CD44-Rezeptor führt im Innern der Zelle zu einer Reaktion: Merlin geht von einem phosphorylierten in einen dephosphorylierten Zustand über: In diesem Zustand hemmt es die weitere Teilung der Zelle.
Bei hohen Zelldichten kommen viele CD44-Rezeptoren mit Bindegewebe anderer Zellen in Kontakt, die Vermehrung der Zellen hört auf. Merlin und CD44 bilden also gemeinsam einen molekularen Schalter, der zwischen Stopp des Zellwachstums und Zellteilung entscheidet.

Inge Arnold | idw

Weitere Berichte zu: CD44 Molekül Protein Teilung Tumorzelle Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein magnetischer Antrieb für Mikroroboter
27.09.2016 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

nachricht Ein Schleusenwärter namens Vigilin
27.09.2016 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: Quantenboost für künstliche Intelligenz

Intelligente Maschinen, die selbständig lernen, gelten als Zukunftstrend. Forscher der Universität Innsbruck und des Joint Quantum Institute in Maryland, USA, loten nun in der Fachzeitschrift Physical Review Letters aus, wie Quantentechnologien dabei helfen können, die Methoden des maschinellen Lernens weiter zu verbessern.

In selbstfahrenden Autos, IBM's Watson oder Google's AlphaGo sind Computerprogramme am Werk, die aus Erfahrungen lernen können. Solche Maschinen werden im Zuge...

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Laser für Neurochirurgie und Biofabrikation - LaserForum 2016 thematisiert Medizintechnik

27.09.2016 | Veranstaltungen

Ist Vergessen die Zukunft?

27.09.2016 | Veranstaltungen

Von der Probe zum digitalen Modell - MikroskopieTrends ´16

26.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanotechnologie für Energie-Materialien: Elektroden wie Blattadern

27.09.2016 | Physik Astronomie

Ultradünne Membranen aus Graphen

27.09.2016 | Physik Astronomie

Ein magnetischer Antrieb für Mikroroboter

27.09.2016 | Biowissenschaften Chemie