Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilungsstopp für Tumorzellen

19.06.2001


Forschungszentrum Karlsruhe entschlüsselt Mechanismus zur Hemmung von Zellteilung

Woher wissen Zellen, wann sie sich teilen müssen und wann die Teilung angehalten werden muss? Im Forschungszentrum Karlsruhe ist ein molekularer "Schalter" gefunden worden, mit dem die Teilung von Zellen gestartet und wieder gestoppt werden kann. Die künstliche Aktivierung dieses Schalters könnte einen Weg zur Hemmung von Krebswachstum eröffnen. Das Verfahren wurde vom Forschungszentrum als Patent angemeldet.

Das hat jeder schon am eigenen Leib erfahren: Eine Wunde verheilt unter anderem dadurch, dass sich die umgebenden Zellen solange vermehren, bis die Verletzung geschlossen ist. Zellen vermehren sich, indem sie sich teilen. In der Zelle - genauer: im Zellkern - wird dazu ein genetisches Programm angeregt. Ob dieses Programm angeregt und wann es wieder beendet wird, hängt von einem komplizierten Gleichgewicht zwischen aktivierenden und hemmenden Prozessen in der Zelle ab. Bei der Entstehung von Krebs ist dieses Gleichgewicht gestört: Entweder sind die antreibenden Faktoren zu stark, oder die "Bremsen" fehlen.
"Wir haben einen Mechanismus entdeckt, wie eine solche Bremse für die Zellteilung von außerhalb der Zelle aktiviert werden kann", erläutert Professor Dr. Helmut Ponta vom Institut für Toxikologie und Genetik des Forschungszentrums Karlsruhe. "Ein Molekül namens CD44, das durch die Zellmembran hindurch, also vom Innern der Zelle nach außen reicht, kann erkennen, ob in der nächsten Nachbarschaft weitere Zellen liegen. Im Innern der Zelle wird dann ein anderes Molekül, es heißt Merlin, aktiviert. Wenn Merlin aktiviert ist, hört die Zelle auf, sich zu teilen."


CD44 ist ein Protein, das im Forschungszentrum schon seit längerem untersucht wird. So konnte nachgewiesen werden, dass es für die Metastasierung von Tumorzellen eine entscheidende Rolle spielt. Interessant ist nun, dass es unter bestimmten Umständen auch tumorhemmend wirken kann: Durch seinen molekularen Aufbau reicht es durch die Zellmembran hindurch und kann Signale von außen in die Zelle hinein vermitteln. So wird über CD44 vermittelt, ob die Zelle von anderen Zellen umgeben ist. Falls dies erkannt wird, aktiviert CD44 im Innern der Zelle das Molekül Merlin. Im aktivierten Zustand stoppt Merlin die Zellteilung.
"Damit haben wir einen Weg gefunden, über den ein Signal von außerhalb der Zelle einen Teilungsstopp bewirkt", so Ponta weiter. "Das eröffnet eine Möglichkeit, über die künstliche Aktivierung von Merlin auch die Teilung von Tumorzellen und damit das Wachstum von Tumoren zu verhindern."
Dieser Weg, über den durch Stimulation von außerhalb der Zelle die Zellteilung aufgehalten werden kann, wurde vom Forschungszentrum Karlsruhe zum Patent angemeldet. Die wissenschaftlichen Ergebnisse sind in der amerikanischen Fachzeitschrift "Genes und Development" (Vol. 15, S. 968 - 980, 2001) abgedruckt.

Wissenschaftlicher Hintergrund

Im Laufe eines Lebens findet in unserem Körper die unvorstellbar hohe Zahl von 10 Billiarden Zellteilungen statt. Jede einzelne wird mit großem Aufwand und höchster Präzision reguliert. In einer Zellkultur teilen sich normale Zellen solange, bis sie den Boden eines Gefäßes bedecken. Das Wachstum wird durch so genannte "Kontaktinhibition" beendet. Bei Tumorzellen funktioniert dies nicht: Die Zellen wachsen in die dritte Dimension weiter und füllen das ganze Gefäß aus. Dies kann auf Ebene der Zelle durch zwei Mechanismen ausgelöst werden, entweder durch Aktivierung von "Onkogenen", also Proteinen, die Krebsentstehung fördern, oder durch Deaktivierung von so genannten "Tumorsuppressorgenen", die Krebsentstehung behindern.


Ein solcher Tumorsuppressor ist das Gen Neurofibromatose 2 (NF2), beziehungsweise das durch NF2 codierte Protein namens Merlin. Das Gen NF2 ist benannt nach Neurofibromatose 2, einer Erbkrankheit, die unter anderem am Auftreten (gutartiger) Tumore im Gehirn (Schwanome) identifiziert werden kann. Die Krankheit entsteht durch einen Fehler im NF2-Gen auf Chromosom 22. Durch die Untersuchungen im Forschungszentrum konnte nun gezeigt werden, wie Merlin die Teilung von Zellen hemmt.
Dazu wird die Vermittlung des Proteins CD44 benötigt, das durch die Membran der Zellen reicht. Das eine Ende von CD44, das außerhalb der Zelle liegt, kann dort Bindegewebe erkennen; das sind Moleküle, die Zellen umgeben. Das Andocken von Bindegewebs-Substanzen an den CD44-Rezeptor führt im Innern der Zelle zu einer Reaktion: Merlin geht von einem phosphorylierten in einen dephosphorylierten Zustand über: In diesem Zustand hemmt es die weitere Teilung der Zelle.
Bei hohen Zelldichten kommen viele CD44-Rezeptoren mit Bindegewebe anderer Zellen in Kontakt, die Vermehrung der Zellen hört auf. Merlin und CD44 bilden also gemeinsam einen molekularen Schalter, der zwischen Stopp des Zellwachstums und Zellteilung entscheidet.

Inge Arnold | idw

Weitere Berichte zu: CD44 Molekül Protein Teilung Tumorzelle Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten