Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Wunderheiler aus Mexiko - ein Salamander als Regenerationskünstler

29.07.2004


Niedliches Monster: Der Axolotl gehört in Sachen Regeneration zu den Champions und wird ob dieser Eigenschaft von Forschern wie Elly Tanaka sehr geschätzt. Bild: MPI für molekulare Zellbiologie und Genetik


Durchsichtig wie Glas erscheint der Schwanz eines jungen Axolotl beim Blick durch ein Mikroskop. Hier ist die Unterteilung des knorpelartigen Rückgrats in mehrere Segmente sichtbar; bei noch stärkerer Vergrößerung lässt sich in der umgebenden Muskulatur sogar das Verhalten einzelner Zellen verfolgen. Bild: MPI für molekulare Zellbiologie und Genetik


Ein Salamander als Regenerationskünstler - und begehrtes Studienobjekt für Wissenschaftler / Neue MaxPlanckForschung erschienen


Wird ihm ein Bein abgerissen, bedeutet das für den Axolotl keinen Beinbruch. Denn diesem mexikanischen Salamander wachsen verlorene Gliedmaßen wieder vollständig nach. Forscher um Elly Tanaka am Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden ergründen dieses erstaunliche Phänomen - um daraus vielleicht Nutzen für den Menschen zu ziehen, bei dem diese Fähigkeit zur Regeneration vergleichsweise eng begrenzt, aber womöglich nur unterdrückt ist und sich deshalb fallweise gezielt "enthemmen" lässt. Darüber berichtet die neue Ausgabe des Wissenschaftsmagazins MaxPlanckForschung (2/2004).

Die Tiere gleichen ihrem eigenen Wachsabguss. Gelblich, mit rosa gefärbten Kiemen-Büscheln am Kopf, wirkt der Axolotl eigenartig unfertig - so, als hätte eine riesige Kaulquappe vergessen, sich zum Frosch zu entwickeln. Diese in Mexiko beheimatete Salamanderart stellt bereits seit fast 200 Jahren - seit Alexander von Humboldt erste Exemplare nach Europa mitbrachte - ein attraktives Objekt biologischer Forschung dar. "Denn diese Salamander", so Elly Tanaka, "sind in Sachen Regeneration die Champions unter den Wirbeltieren": Selbst ein ausgewachsener, fußlanger Axolotl ist noch in der Lage, ein abgeschnittenes Bein, den kompletten Schwanz, ein Stück Kiefer, ein verlorenes Auge oder sogar Teile des Herzens innerhalb weniger Wochen nachwachsen zu lassen.


Das Interesse an dieser verblüffenden Regenerationsfähigkeit der Amphibien wird durch aktuelle Forschungen noch verstärkt. Danach besitzen auch Menschen in vielen Organen, von der Leber bis zum Gehirn, so genannte Stammzellen, die möglicherweise zur Regeneration fähig sind - die aber dieses Potenzial nur sehr begrenzt entfalten. Und deshalb die Frage: Wenn ein "Neubau" von Gliedmaßen oder Organen bei Tieren wie dem Axolotl funktioniert - warum nicht ebenso beim Menschen?

Deshalb verfolgen Forscher, die sich für menschliche Stammzellen interessieren, aufmerksam die Befunde, die Tanakas Dresdner Gruppe zusammen mit einer kleinen Gemeinde aus weltweit einem Dutzend Labors an den Salamander-Verwandten erarbeitet. Denn: Auch wenn sich der Axolotl offenbar seit 350 Millionen Jahren nicht wesentlich verändert hat, spricht einiges dafür, dass gewisse Grundprinzipien der Gewebe-Reparatur alte "Erfindungen" der Natur darstellen, die auch im Körper eines Menschen nach wie vor ähnlich ablaufen - oder besser: ablaufen könnten, hätten nicht Menschen und andere Säugetiere irgendwann die Fähigkeit zur Regeneration weitgehend aufgegeben. Es geht also um die Frage, ob dieses Potenzial bei den Säugern endgültig verloren oder lediglich unterdrückt ist und vielleicht wieder geweckt werden könnte.

Inzwischen ist beim Axolotl eine Reihe von Botenstoffen identifiziert, die den Zellen im Umfeld einer Verletzung das Signal zur Regeneration vermitteln. Dazu gehört ein Hormon, das von Blutgerinnseln ausgeht, Zellen im umgebenden gesunden Gewebe alarmiert und an den Ort der Verletzung lockt - ein Signalstoff, der weitgehend einer Substanz gleicht, die man schon bei Kälbern gefunden hat. Ob sie auch beim Menschen vorliegt und welche Funktion sie hier erfüllt, ist noch zu klären.

Außerdem haben die Wissenschaftler um Tanaka inzwischen Einblick in die zeitliche "Choreographie" der zellulären Prozesse im Nahbereich einer Verletzung gewonnen und herausgefunden, dass zwar die meisten Zellen eine Erinnerung an ihre Abstammung bewahren, manche aber auch zu einem "Rollenwechsel" fähig sind: So können sich etwa Zellen aus dem Nervensystem in Muskel- oder Knorpelzellen umwandeln.

Die Einsicht in diese Mechanismen soll und wird letztlich verstehen helfen, warum die Fähigkeit zur Regeneration bestimmter Gewebe oder Organe bei Säugern ungleich schwächer als bei Salamandern ist. Bei Säugern, das ist schon länger bekannt, hemmt ein bestimmter Signalstoff nach Verletzungen des Rückenmarks dessen Regeneration; wird dieser Stoff aber durch Antikörper blockiert, heilen die Verletzungen wesentlich besser aus. Beim Axolotl, so zeigen erste Versuche, spielt ein molekular sehr ähnlicher Signalstoff bei der Regeneration mit - hier aber offenbar mit einer anderen Funktion. Die Zukunft wird zeigen, wie viel von den regenerativen Kräften des Axolotls auch in Säugern und somit im Organismus des Menschen steckt.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Axolotl Regeneration Salamander Säugern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie