Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues labordiagnostisches Verfahren für den ’’funktionalen Protein-Fingerabdruck’’

13.07.2004


Das Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik der Universität Leipzig erhält im Rahmen des GenoSNIP-Projektes 332.340 Euro Fördermittel von der Sächsischen Aufbaubank, um in Zusammenarbeit mit der Bruker Daltonik GmbH Leipzig ein diagnostisches Verfahren zum sicheren Nachweis bestimmter Erkrankungen zu entwickeln, das auf dem sogenannten ’’funktionalen Protein-Fingerabdruck’’ beruht.



Der "genetische Fingerabdruck" hat inzwischen nicht nur in der Forensik Furore gemacht. Jetzt gehen die Wissenschaftler noch ein Stückchen weiter: Sie untersuchen die Eiweiße oder Proteine, die aus dem Genom als der Gesamtheit der Gene entstehen und unsere Körperfunktionen steuern. "Sie sind die eigentlichen Player", erklärt Prof. Dr. Joachim Thiery, Direktor des Institutes für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik. Das Genom ist sozusagen das Programm oder die Software, deren individueller Inhalt die Proteine sind und analog zum Genom als Proteom bezeichnet werden. "Raupe und Schmetterling haben z.B. das gleiche Genom, zeichnen sich aber durch ein unterschiedliches Proteom-Profil und damit anderes Erscheinungsbild aus." so Thiery.



Proteine oder Eiweiße steuern die verschiedensten Körperfunktionen und sind somit maßgeblich verantwortlich für Gesundheit oder Krankheit. Wenn es gelänge, diese funktionale Proteinmuster im Blut präzise zu erfassen und wiederkehrende Merkmale mit bestimmten Krankheitsbildern in Zusammenhang zu bringen, ließen sich vielleicht zuverlässige Marker für diese Krankheiten finden, vor allem dann, wenn sie sich beim Patienten noch nicht mit den üblichen Symptomen bemerkbar machen. Dies würde einer Revolution auf dem Gebiet der Diagnose schwerer Erkrankungen gleichkommen, von deren frühzeitiger Behandlung ihre Heilung abhängen könnte wie z.B. bei Krebs oder Herzerkrankungen. Das waren die Ausgangsüberlegungen der Wissenschaftler um Prof. Thiery.

Durch die schnell voranschreitende Entwicklung im Bereich der Proteinanalytik und der Bioinformatik ist heute eine sehr präzise Analyse von komplexen Proteinmustern in Patientenblut mittels MALDI-TOF Massenspektrometrie möglich geworden. Vorraussetzung für die Durchführung der Proteinanalyse ist eine Abtrennung der Proteine von der Blutmatrix. Diese erfolgt mittels neu entwickelter magnetischer Mikropartikel mit charakteristischen Oberflächeneigenschaften. Nach der Aufarbeitung der Blutprobe werden die Proteine mit einer chemischen Matrix vermischt und getrocknet auf einer Metallplatte im Massenspektrometer analysiert. Dazu werden durch einen Laser-Impuls die Eiweiße ionisiert und im elektrischen Feld beschleunigt. Von der Fluggeschwindigkeit kann man auf die Masse der einzelnen Eiweißmoleküle schließen und sie somit identifizieren. Auf diese Weise erhält quasi einen individuellen "Proteinfingerabdruck", der sich zwischen Gesunden und Kranken unterscheidet. Bei ersten Untersuchungen einer amerikanischen Arbeitsgruppe an Patientinnen mit Eierstock-Krebs gelang es, bereits frühzeitig durch Untersuchung des "funktionalen Proteinfingerprints" im Blut den Tumor nachzuweisen.

Mit den eingeworbenen Mitteln wollen die Wissenschaftler jetzt charakteristische Proteinprofile für bestimmte Krankheiten herausfinden: Das sind 1. Dickdarmkrebs und Bauschspeicheldrüsenkrebs; 2. kardiovaskuläre Erkrankungen und 3. Herz-Insuffizienz. Alle drei Krankheiten werden aufgrund bis-her unzureichender labormedizinischer Analysenmethoden in der Regel zu spät erkannt und sind dadurch einer erfolgreichen Behandlung nur sehr schwer zugänglich. Gelänge eine zuverlässige Erstellung des Proteinmusters, könnten die genannten Erkrankungen mit Hilfe einer einfachen Blutuntersuchung frühzeitig diagnostiziert und damit erfolgversprechend behandelt werden.

Die Leipziger Wissenschaftler können auf die modernen massenspektrometrischen Analysengeräte von Bruker Daltonik Leipzig zurückgreifen und auf die Unterstützung der internationalen Firma bauen, die mit einer eigenen Fertigungsstrecke in Leipzig vertreten ist. Prof. Thiery hofft, dass die seit Ende letzten Jahres arbeitende interdisziplinäre Forschergruppe, an der Wissenschaftler verschiedener universitärer Einrichtungen beteiligt sind, 2005 valide Ergebnisse vorlegen kann.

Weitere Informationen Prof. Dr. Joachim Thiery
Telefon: 0341 97-22200
E-Mail: thiery@medizin.uni-leipzig.de

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Berichte zu: Eiweiß Genom Protein Protein-Fingerabdruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten