Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unverzichtbare Rolle der dritten tRNA-Bindungsstelle des Ribosoms für fehlerfreie Übersetzung der Erbinformation nachgewiesen

13.07.2004


Kryo-Elektronenmikroskopische Rekonstruktion von tRNAs im Pre- und Post-Stadium, die an ein 70S-Ribosom (gelb: kleine Untereinheit, blau: große Untereinheit) gebunden sind (mRNA nicht mit dargestellt). PRE: tRNAs sind an die A- (pink) und P- (grün) Bindungsstellen des Ribosoms gebunden. Bei der Translokation wandern sie vom der A- in die Pund von der P- in die E-Stelle. Dabei ziehen sie die mRNA mit sich mit. POST: Nach der Translokation sind die tRNAs an die P- (grün) und E- (gelb) Bindungsstelle gebunden. Damit ist die A-Bindungsstelle frei und kann erneut eine tRNA binden. Abkürzungen: CP - central protuberance; ST - L7/L12 stalk base; lb - long bridge (helix 38 of 23 S rRNA); h - head; ch - mRNA channel; sh - shoulder region ; sp - spur. (Abbildung modifiziert nach Agrawal et al., J Cell Biol 2000)


Max-Planck-Forscher klären universellen Mechanismus für die Übersetzung der genetischen Information auf


Die Bildung von Proteinen am Ribosom als Ergebnis der exakten Übersetzung genetischer Information in eine definierte Kette von Aminosäuren ist eine der großartigsten Leistungen des Organismus. Ohne das strikte Einhalten des Lese-/Übersetzungsrasters von jeweils drei Basen in eine dadurch definierte Aminosäure ist die genetische Information jedoch wertlos. Wissenschaftler am Max-Planck-Institut für molekulare Genetik in Berlin konnten jetzt zeigen, dass die dritte tRNA-Bindungsstelle am Ribosom die Einhaltung des Leserasters der mRNA bei der Proteinbiosynthese kontrolliert. In der Fachzeitschrift Cell beschreiben sie die Funktion dieser dritten, bislang in ihrer Rolle umstrittenen tRNA-Bindungsstelle, deren Vorhandensein sie bereits 1980 nachgewiesen hatten [Cell 118: 45-55, 2004].

Die genetische Information aller Organismen ist als lineare Abfolge der vier Bausteine A, T (U bei RNA), G und C in den Nukleinsäuren DNA und RNA gespeichert. Damit die Information jedoch ihre Wirkung im Organismus entfalten kann, muss sie zunächst in Proteine, die Arbeits- und Funktionsstoffe der Zelle, übersetzt werden. Auch Proteine sind kettenförmige Moleküle aus einzelnen Bausteinen, in diesem Fall aus Aminosäuren. Zwanzig verschiedene existieren im Organismus, die für jedes Protein in festgelegter Reihenfolge aneinander gehängt werden müssen. Störungen bzw. Fehler in der Reihenfolge können zum Funktionsverlust des betroffenen Proteins führen. Die Anleitung für die richtige Reihenfolge verbirgt sich in der Abfolge der einzelnen Bausteine der DNA. Jeweils drei aufeinander folgende DNA-Bausteine (ein "Codon") kodieren eine bestimmte Aminosäure.


Für die Übersetzung der DNA wird die enthaltene Information in Form der Boten-RNA (messengerRNA/mRNA) von der DNA zu den Ribosomen, den "Produktionsstätten" der Proteine, transportiert. L-förmige Moleküle mit einem spezifischen Basen-Triplett ("Anticodon") an einem und einer dazu gehörigen Aminosäure am anderen Ende, die so genannten transfer-RNAs (tRNAs), "lesen" die an das Ribosom gebundene mRNA über präzises Einpassen der jeweiligen Codon-Anticodon-Paare ab. Durch Verknüpfung der Aminosäuren der "lesenden" tRNAs entsteht ein neues, genau definiertes Protein.

Für das Ablesen der mRNA ist es von größter Bedeutung, dass das Ribosom das richtige Leseraster auf der Nukleinsäurekette erkennt und einhält. Genau wie der Satz "die-kuhkam- auf-die-alm " zu dem sinnlosen " die-kuhk-ama-ufd-iea-lm " wird, wenn das Leseraster nur um eine Stelle verschoben wird, verliert auch die Information in der mRNA auf diese Art ihre Bedeutung. Bereits seit langem ist bekannt, dass zwei funktionelle tRNABindestellen (A + P) am Ribosom für die Bindung der tRNA und das Ablesen der mRNA verantwortlich sind. Nierhaus und seine Mitarbeiter wiesen nun die Funktion einer dritten, ebenfalls universell vorhandenen Bindungsstelle (E-Stelle) nach, welche sie bereits 1980 entdeckt hatten. Sie konnten zeigen, dass die mRNA für das feste Einhalten des Leserasters jeweils über die Anticodone zweier benachbarter tRNAs auf dem Ribosom verbunden sein muss. Werden die tRNAs um eine Codonlänge im Ribosom verschoben (Translokation), wandern sie vom der A- in die P- und von der P- in die E-Stelle (siehe Abbildung 1) und ziehen die mRNA mit sich mit. Die Codon-Anticodon-Brücken zwischen tRNAs und mRNAs müssen dabei erhalten bleiben, um ein Verrutschen der mRNA und damit eine Verschiebung des Leserasters zu vermeiden. Die Bindung einer neuen tRNA an die nach der Translokation wieder freie A-Stelle erfolgt zeitgleich mit der Ablösung von der E-Bindungsstelle, d.h., während der Proteinsynthese befinden sich mindestens immer zwei tRNAs auf dem Ribosom. Wird die tRNA aus der E-Stelle jedoch vorzeitig aus dem Ribosom entfernt, so dass die mRNA nur noch über ein Anticodon gebunden ist, kommt es häufig zum "frame shift", d.h., dem Weiterrücken der ablesenden tRNAs um eine Position auf der mRNA (siehe Abbildung 2). Dies führt zum Verlust des Leserasters. Wird dagegen die mRNA über zwei Anticodone verankert, verliert das Ribosom weniger als einmal bei 30.000 Übersetzungsschritten spontan den Leserahmen.

Die Aufklärung dieses Mechanismus zur Erhaltung des Leserahmens gelang den Berliner Forschern über einen Umweg. Bereits seit längerem ist bekannt, dass beispielsweise der bakterielle Proteinsynthese-Faktor RF2 für seine Bildung eine gezielte Verschiebung des Leserasters am 26. Codon benötigt. Nierhaus und seine Kollegen konnten zeigen, dass auch hier alle drei Bindungsstellen aktiv an der Übersetzung der mRNA beteiligt sind. Allerdings kommt es beim Einrücken des 26. Codons in die A-Stelle zu einer gezielten Verdrängung der tRNA an der E-Bindungsstelle (siehe Abbildung 2). Die Verdrängung erfolgt dabei mittels einer "Shine-Dalgarno"(SD)-Sequenz, die stark an einen definierten Teil des Ribosoms (Anti-SD) bindet.

Praktisch jede bakterielle mRNA enthält eine so genannte "Shine-Dalgarno"(SD)- Sequenz. Üblicherweise befindet sie sich vor dem Codon für die erste A-Bindungsstelle einer mRNA und sorgt dafür, dass die mRNA richtig innerhalb des Ribosoms positioniert wird. Die RF2 mRNA besitzt eine zweite SD-ähnliche Sequenz vor dem 26. Codon. Wenn diese an das Ribosom bindet, kommt es zu einer Überlappung mit der E-Bindungsstelle und die dort gebundene tRNA wird verdrängt. Dadurch erhält die mRNA Bewegungsfreiheit und die erforderliche Leserasterverschiebung kann stattfinden.

Fazit: Nach der Translokation müssen tRNAs in P und E Stelle die mRNA mittels Codon-Anticodon-Wechselwirkung verankern, um eine Leserasterverschiebung zu vermeiden. Der Regulationsmechanismus für die Synthese des RF2 Faktors nutzt die Bedeutung der tRNA in der E Stelle aus: Die SD Sequenz verdrängt die tRNA aus der E-Stelle und ermöglicht damit die hocheffiziente Leserasterverschiebung, die für die RF2 Synthese erforderlich ist.

Vollständiger Artikel: Viter Márquez, Daniel N. Wilson, Warren P. Tate, Francisco Triana-Alonso, Knud H. Nierhaus. Maintaining the Ribosomal Reading Frame: The Influence of the E site during Translational Regulation of Release Factor 2. Cell 2004 118: 45-55, July 9, 2004.

Weitere Informationen:

Prof. Dr. Knut Nierhaus
Max-Planck-Institut für molekulare Genetik
Tel.: 030-8413-1700, Fax: 030-8413-1690
AG Ribosomen Email:nierhaus@molgen.mpg.de
Ihnestrasse 63-73, 14195 Berlin

Dr. Patricia Beziat | idw
Weitere Informationen:
http://www.molgen.mpg.de

Weitere Berichte zu: Aminosäure Codon DNA E-Stelle Leseraster Organismus Protein RF2 Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften