Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strukturaufklärung und synthetischer Nachbau des Muschelgiftes Azaspiracid

07.07.2004


Meeresfrüchte sind bekanntlich mit Vorsicht zu genießen, denn ihr Verzehr kann gelegentlich zu Vergiftungen führen. Meist sind Einzeller, die vom Meeresgetier gefressen werden, die Giftproduzenten. Ein bestimmter Vergiftungstyp, der in europäischen Gewässern kultivierte Miesmuscheln betrifft, wird durch das Nervengift Azaspiracid-1 verursacht. Vor einigen Jahren wurde eine Struktur für diese Verbindung vorgeschlagen, die sich inzwischen aber als fehlerhaft erwies. Kalifornische Forscher um K. C. Nicolaou haben sich das Muschelgift nun noch einmal vorgenommen und nicht locker gelassen, bis alle Fehler des ursprünglichen Vorschlags aufgedeckt und korrigiert waren. Durch eine Totalsynthese, also den kompletten Nachbau des Naturstoffes im Labor, traten die Wissenschaftler den Beweis an, dass die revidierte Struktur korrekt ist. "Auf der Basis unseres Synthesewegs können zudem ausreichende Mengen Azaspiracid hergestellt werden," sagt Nicolaou, "um dessen Wirkmechanismen weiter zu erforschen und vor allem Methoden zu entwickeln, mit denen Meeresfrüchte und Gewässer überwacht werden können."



Warum war die Sturkturaufklärung von Azaspiracid-1 ein so schwieriges Unterfangen? Der Naturstoff hat ein komplexes Gerüst aus neun verschiedenen (A bis I genannten), teilweise miteinander verschmolzenen Ringen. Drei brezelartige "spirocyclische" Verknüpfungen zwischen den Ringen (ein Kohlenstoffatom gehört zwei senkrecht zueinander stehenden Ringen gemeinsam) lassen dabei verschiedene Möglichkeiten zu, wie die genaue räumliche Struktur (Konfiguration) an diesen Ringen aussehen könnte. Zudem enthält das Molekül insgesamt 20 chirale Kohlenstoffzentren. Chiral bedeutet, dass die Bindungspartner dieser Atome auf jeweils zwei verschiedene Weisen angeordnet sein könnten, die sich zueinander verhalten wie Bild und Spiegelbild.



Um der richtigen Struktur auf die Schliche zu kommen, zerlegten die Forscher das natürliche Azaspiracid in kleinere Bruchstücke, "kochten" diese im Labor zunächst entsprechend dem ersten Strukturvorschlag nach und verglichen sie mithilfe spektrometrischer und chromatographischer Methoden mit den Original-Puzzleteilen, um die Fehler einzukreisen. Nach dieser Puzzle-Methode gelang es ihnen zuerst, die Struktur des Ringsystem FGHI zu verifizieren und die Konfiguration von Ring E zu revidieren. Ein Analogieschluss durch Vergleich mit der Struktur eines verwandten Naturstoffs half bei Ringsystem ABCD weiter: Eine Doppelbindung muss gegenüber dem ursprünglichen Vorschlag um einen Platz weiter gerückt werden. Zu revidieren war außerdem die Konfiguration beider spirocyclischer Verknüpfungen zwischen den Ringen A, B und C. Die letzten Fragen, etwa ob Ringsystem ABCD als Bild oder Spiegelbildvariante vorliegt, klärten sich bei der finalen Verknüpfung der einzelnen Puzzleteile zum Gesamtmolekül.

Kontakt:

Prof. Dr. K. C. Nicolaou
Department of Chemistry and
The Skaggs Institute for Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road
La Jolla, California 92037, USA
Tel.: (+1) 858-784-2400; -8772
Fax: (+1) 858-784-2469
E-mail: kcn@scripps.edu

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Azaspiracid Konfiguration Muschelgift Ringsystem Verknüpfung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie