Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strukturaufklärung und synthetischer Nachbau des Muschelgiftes Azaspiracid

07.07.2004


Meeresfrüchte sind bekanntlich mit Vorsicht zu genießen, denn ihr Verzehr kann gelegentlich zu Vergiftungen führen. Meist sind Einzeller, die vom Meeresgetier gefressen werden, die Giftproduzenten. Ein bestimmter Vergiftungstyp, der in europäischen Gewässern kultivierte Miesmuscheln betrifft, wird durch das Nervengift Azaspiracid-1 verursacht. Vor einigen Jahren wurde eine Struktur für diese Verbindung vorgeschlagen, die sich inzwischen aber als fehlerhaft erwies. Kalifornische Forscher um K. C. Nicolaou haben sich das Muschelgift nun noch einmal vorgenommen und nicht locker gelassen, bis alle Fehler des ursprünglichen Vorschlags aufgedeckt und korrigiert waren. Durch eine Totalsynthese, also den kompletten Nachbau des Naturstoffes im Labor, traten die Wissenschaftler den Beweis an, dass die revidierte Struktur korrekt ist. "Auf der Basis unseres Synthesewegs können zudem ausreichende Mengen Azaspiracid hergestellt werden," sagt Nicolaou, "um dessen Wirkmechanismen weiter zu erforschen und vor allem Methoden zu entwickeln, mit denen Meeresfrüchte und Gewässer überwacht werden können."



Warum war die Sturkturaufklärung von Azaspiracid-1 ein so schwieriges Unterfangen? Der Naturstoff hat ein komplexes Gerüst aus neun verschiedenen (A bis I genannten), teilweise miteinander verschmolzenen Ringen. Drei brezelartige "spirocyclische" Verknüpfungen zwischen den Ringen (ein Kohlenstoffatom gehört zwei senkrecht zueinander stehenden Ringen gemeinsam) lassen dabei verschiedene Möglichkeiten zu, wie die genaue räumliche Struktur (Konfiguration) an diesen Ringen aussehen könnte. Zudem enthält das Molekül insgesamt 20 chirale Kohlenstoffzentren. Chiral bedeutet, dass die Bindungspartner dieser Atome auf jeweils zwei verschiedene Weisen angeordnet sein könnten, die sich zueinander verhalten wie Bild und Spiegelbild.



Um der richtigen Struktur auf die Schliche zu kommen, zerlegten die Forscher das natürliche Azaspiracid in kleinere Bruchstücke, "kochten" diese im Labor zunächst entsprechend dem ersten Strukturvorschlag nach und verglichen sie mithilfe spektrometrischer und chromatographischer Methoden mit den Original-Puzzleteilen, um die Fehler einzukreisen. Nach dieser Puzzle-Methode gelang es ihnen zuerst, die Struktur des Ringsystem FGHI zu verifizieren und die Konfiguration von Ring E zu revidieren. Ein Analogieschluss durch Vergleich mit der Struktur eines verwandten Naturstoffs half bei Ringsystem ABCD weiter: Eine Doppelbindung muss gegenüber dem ursprünglichen Vorschlag um einen Platz weiter gerückt werden. Zu revidieren war außerdem die Konfiguration beider spirocyclischer Verknüpfungen zwischen den Ringen A, B und C. Die letzten Fragen, etwa ob Ringsystem ABCD als Bild oder Spiegelbildvariante vorliegt, klärten sich bei der finalen Verknüpfung der einzelnen Puzzleteile zum Gesamtmolekül.

Kontakt:

Prof. Dr. K. C. Nicolaou
Department of Chemistry and
The Skaggs Institute for Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road
La Jolla, California 92037, USA
Tel.: (+1) 858-784-2400; -8772
Fax: (+1) 858-784-2469
E-mail: kcn@scripps.edu

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Azaspiracid Konfiguration Muschelgift Ringsystem Verknüpfung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie